STARNet: Low-light video enhancement using spatio-temporal consistency aggregation

被引:0
|
作者
Wu, Zhe [1 ]
Sheng, Zehua [1 ]
Zhang, Xue [1 ]
Cao, Si-Yuan [2 ]
Zhang, Runmin [1 ]
Yu, Beinan [3 ,4 ]
Zhang, Chenghao [1 ]
Yang, Bailin [5 ]
Shen, Hui-Liang [1 ,6 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Ningbo Innovat Ctr, Ningbo, Peoples R China
[3] Zhejiang Univ, Jinhua Inst, Jinhua, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[5] Zhejiang Gongshang Univ, Sch Comp Sci & Technol, Hangzhou, Peoples R China
[6] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Low-light enhancement; Image processing; Video enhancement; Spatio-temporal aggregation; NETWORK;
D O I
10.1016/j.patcog.2024.111180
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In low-light environments, capturing high-quality videos is an imaging challenge due to the limited number of photons. Previous low-light enhancement approaches usually result in over-smoothed details, temporal flickers, and color deviation. We propose STARNet, an end-to-end video enhancement network that leverages temporal consistency aggregation to address these issues. We introduce a spatio-temporal consistency aggregator, which extracts structures from multiple frames in hidden space to overcome detail corruption and temporal flickers. It parameterizes neighboring frames to extract and align consistent features, and then selectively fuses consistent features to restore clear structures. To further enhance temporal consistency, we develop a local temporal consistency constraint with robustness against the warping error from motion estimation. Furthermore, we employ a normalized low-frequency color constraint to regularize the color as the normal-light condition. Extensive experimental results on real datasets show that the proposed method achieves better detail fidelity, color accuracy, and temporal consistency, outperforming state-of-the-art approaches.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video Grounding
    Jin, Yang
    Li, Yongzhi
    Yuan, Zehuan
    Mu, Yadong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] ENHANCED SPATIO-TEMPORAL VIDEO COPY DETECTION BY COMBINING TRAJECTORY AND SPATIAL CONSISTENCY
    Ozkan, Savas
    Esen, Ersin
    Akar, Gozde Bozdagi
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2527 - 2531
  • [43] Video Object Detection Using Object's Motion Context and Spatio-Temporal Feature Aggregation
    Kim, Jaekyum
    Koh, Junho
    Lee, Byeongwon
    Yang, Seungji
    Choi, Jun Won
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1604 - 1610
  • [44] Adversarial Context Aggregation Network for Low-Light Image Enhancement
    Shin, Yong-Goo
    Sagong, Min-Cheol
    Yeo, Yoon-Jae
    Ko, Sung-Jea
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 617 - 621
  • [45] Temporal aggregation and spatio-temporal traffic modeling
    Percoco, Marco
    JOURNAL OF TRANSPORT GEOGRAPHY, 2015, 46 : 244 - 247
  • [46] Video Synopsis Generation Using Spatio-Temporal Groups
    Ahmed, A.
    Kar, S.
    Dogra, D. P.
    Patnaik, R.
    Lee, S.
    Choi, H.
    Kim, I.
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 512 - 517
  • [47] Video Caption Extraction Using Spatio-Temporal Slices
    Chen, Liang-Hua
    Su, Chih-Wen
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2018, 18 (02)
  • [48] Spatio-temporal segmentation using laserscanner and video sequences
    Kaempchen, N
    Zocholl, M
    Dietmayer, KCJ
    PATTERN RECOGNITION, 2004, 3175 : 367 - 374
  • [49] Video texture indexing using spatio-temporal wavelets
    Smith, JR
    Lin, CH
    Naphade, M
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 437 - 440
  • [50] Video spatio-temporal signatures using polynomial transforms
    Rivero-Moreno, CJ
    Bres, S
    VISUAL INFORMATION AND INFORMATION SYSTEMS, 2006, 3736 : 50 - 59