Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls

被引:0
|
作者
Debbouche, Amar [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Department of Mathematics, Guelma University, Guelma,24000, Algeria
[2] Departamento de Análisis Matemático, Universidad de Santiago de Compostela, Santiago de Compostela,15782, Spain
[3] Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
关键词
31;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:74 / 85
相关论文
共 50 条
  • [41] Existence and optimal controls for nonlocal fractional evolution equations of order (1,2) in Banach spaces
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat Ullah Khan
    Sheng, Jiale
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [42] Existence and optimal controls for nonlocal fractional evolution equations of order (1,2) in Banach spaces
    Denghao Pang
    Wei Jiang
    Azmat Ullah Khan Niazi
    Jiale Sheng
    Advances in Difference Equations, 2021
  • [43] Existence of Sobolev-Type Hilfer Fractional Neutral Stochastic Evolution Hemivariational Inequalities and Optimal Controls
    Sivasankar, Sivajiganesan
    Udhayakumar, Ramalingam
    Muthukumaran, Venkatesan
    Madhrubootham, Saradha
    AlNemer, Ghada
    Elshenhab, Ahmed M.
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [44] NONLINEAR NONLOCAL ψ-CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [45] Optimal controls of fractional backward nonlocal stochastic evolution hemivariational inequalities
    Hu, Fan
    Jiang, Yirong
    Lu, Jingping
    JOURNAL OF CONTROL AND DECISION, 2025,
  • [46] Existence of mild solutions for Sobolev-type Hilfer fractional evolution equations with boundary conditions
    Gou, Haide
    Li, Baolin
    BOUNDARY VALUE PROBLEMS, 2018,
  • [47] Existence of mild solutions for Sobolev-type Hilfer fractional evolution equations with boundary conditions
    Haide Gou
    Baolin Li
    Boundary Value Problems, 2018
  • [48] On a study of Sobolev-type fractional functional evolution equations
    Huseynov, Ismail T.
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5002 - 5042
  • [49] A Study on Impulsive Hilfer Fractional Evolution Equations with Nonlocal Conditions
    Gou, Haide
    Li, Yongxiang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (02) : 205 - 218
  • [50] Approximation Technique for Fractional Evolution Equations with Nonlocal Integral Conditions
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)