Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes

被引:0
|
作者
Copeland, Dylan M. [1 ]
机构
[1] Institute for Applied Mathematics and Computational Science, Texas A and M University, College Station, TX, 77843, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:915 / 928
相关论文
共 50 条
  • [31] Boundary element methods for Maxwell's equations on non-smooth domains
    Buffa, A
    Costabel, M
    Schwab, C
    NUMERISCHE MATHEMATIK, 2002, 92 (04) : 679 - 710
  • [32] Boundary element methods for Maxwell's equations on non-smooth domains
    A. Buffa
    M. Costabel
    C. Schwab
    Numerische Mathematik, 2002, 92 : 679 - 710
  • [33] The h-p version of the coupling of finite element and boundary element methods for transmission problems in polyhedral domains
    Benqi Guo
    Ernst P. Stephan
    Numerische Mathematik, 1998, 80 : 87 - 107
  • [34] The h-p version of the coupling of finite element and boundary element methods for transmission problems in polyhedral domains
    Guo, BQ
    Stephan, EP
    NUMERISCHE MATHEMATIK, 1998, 80 (01) : 87 - 107
  • [35] Constraint-Preserving Hybrid Finite Element Methods for Maxwell’s Equations
    Yakov Berchenko-Kogan
    Ari Stern
    Foundations of Computational Mathematics, 2021, 21 : 1075 - 1098
  • [36] Constraint-Preserving Hybrid Finite Element Methods for Maxwell's Equations
    Berchenko-Kogan, Yakov
    Stern, Ari
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (04) : 1075 - 1098
  • [37] Time Domain Finite Element Methods for Maxwell's Equations in Three Dimensions
    Anees, Asad
    Angermann, Lutz
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [38] A general element for shell analysis based on the scaled boundary finite element method
    Lin, Gao
    Ye, Wenbin
    Li, Zhiyuan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (19)
  • [39] Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes
    Gillette, Andrew
    Rand, Alexander
    Bajaj, Chandrajit
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (04) : 667 - 683
  • [40] THE COUPLING OF BOUNDARY ELEMENT AND FINITE-ELEMENT METHODS
    HSIAO, GC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T493 - T503