Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes

被引:0
|
作者
Copeland, Dylan M. [1 ]
机构
[1] Institute for Applied Mathematics and Computational Science, Texas A and M University, College Station, TX, 77843, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:915 / 928
相关论文
共 50 条
  • [1] A modified weak Galerkin finite element method for the Maxwell equations on polyhedral meshes
    Wang, Chunmei
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448
  • [2] Efficient weak Galerkin finite element methods for Maxwell equations on polyhedral meshes without convexity constraints
    Wang, Chunmei
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [3] From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes
    Copeland, Dylan
    Langer, Ulrich
    Pusch, David
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 315 - 322
  • [4] Recovered finite element methods on polygonal and polyhedral meshes
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (04): : 1309 - 1337
  • [5] Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients
    Chen, ZM
    Du, Q
    Zou, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) : 1542 - 1570
  • [6] On the coupling of finite and boundary element methods for the Helmholtz equation
    Boutefnouchet, M.
    Djebabla, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A2): : 191 - 200
  • [7] Mixed finite element method on polygonal and polyhedral meshes
    Kuznetsov, Y
    Repin, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 615 - 622
  • [8] Nodal finite element methods for Maxwell's equations.
    Jamelot, E
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 809 - 814
  • [9] MIXED FINITE ELEMENT METHODS FOR LINEAR ELASTICITY AND THE STOKES EQUATIONS BASED ON THE HELMHOLTZ DECOMPOSITION
    Schedensack, Mira
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 399 - 425
  • [10] A new coupling of mixed finite element and boundary element methods for an exterior Helmholtz problem in the plane
    Gabriel N. Gatica
    Antonio Márquez
    Salim Meddahi
    Advances in Computational Mathematics, 2009, 30 : 281 - 301