Nonlinear feedback excitation for system interrogation by bifurcation morphing

被引:0
|
作者
Yin, Shih-Hsun [1 ]
Epureanu, Bogdan I. [2 ,3 ]
机构
[1] Department of Civil Engineering, National Taipei University of Technology, Number 1, Chung-Hsiao East Road, Taipei 106, Taiwan
[2] Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109-2125, United States
[3] AIAA
来源
AIAA Journal | 2008年 / 46卷 / 08期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:2058 / 2065
相关论文
共 50 条
  • [21] Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method
    Xu, Yong
    Ma, Shaojuan
    Zhang, Huiqing
    NONLINEAR DYNAMICS, 2011, 65 (1-2) : 77 - 84
  • [22] Bifurcation Analysis and Chaos Switchover Phenomenon in a Nonlinear Financial System with Delay Feedback
    Ding, Yuting
    Cao, Jun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (12):
  • [23] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
    Liu Shuang
    Zhao Shuang-Shuang
    Wang Zhao-Long
    Li Hai-Bin
    CHINESE PHYSICS B, 2015, 24 (01)
  • [24] Hard excitation regime in a nonlinear optical system with distributed feedback.
    Larichev, AV
    Nikolaev, IP
    Shmalgauzen, VI
    KVANTOVAYA ELEKTRONIKA, 1996, 23 (03): : 255 - 256
  • [25] Controlling chaos and bifurcation by a delayed nonlinear feedback
    Yang, SP
    Tian, G
    Xu, SS
    CHINESE PHYSICS LETTERS, 1996, 13 (05) : 333 - 336
  • [26] Research on the influence of excitation amplitude on global bifurcation characteristics of nonlinear energy sink system
    Li S.
    Lou J.-J.
    Chai K.
    Liu S.-Y.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2021, 25 (04): : 479 - 488
  • [27] Stability, bifurcation and chaos of nonlinear active suspension system with time delay feedback control
    Shao S.
    Ren C.
    Jing D.
    Yan T.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (07): : 281 - 290
  • [28] Local bifurcation theory of nonlinear systems with parametric excitation
    Chen, YSS
    Xu, J
    NONLINEAR DYNAMICS, 1996, 10 (03) : 203 - 220
  • [29] Nonlinear Feedback Models of Hysteresis BACKLASH, BIFURCATION, AND MULTISTABILITY
    Oh, Jinhyoung
    Drincic, Bojana
    Bernstein, Dennis S.
    IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (01): : 100 - 119
  • [30] Bifurcation and chaos in simple nonlinear feedback control systems
    Tang, WKS
    BIFURCATION CONTROL: THEORY AND APPLICATIONS, 2003, 293 : 83 - 98