A Modular Framework for Centrality and Clustering in Complex Networks

被引:0
|
作者
Oggier, Frederique [1 ]
Phetsouvanh, Silivanxay [2 ]
Datta, Anwitaman [3 ]
机构
[1] Division of Mathematical Sciences, Nanyang Technological University, Singapore,639798, Singapore
[2] Ministry of Technology and Communications, Vientiane,01000, Laos
[3] School of Computer Science and Engineering, Nanyang Technological University, Singapore,639798, Singapore
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:40001 / 40026
相关论文
共 50 条
  • [31] Composite Centrality: A Natural Scale for Complex Networks
    Joseph, Andreas
    Chen, Guanrong
    8TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS 2012), 2012, : 739 - 743
  • [32] Fuzzy Centrality Evaluation in Complex and Multiplex Networks
    Tavassoli, Sude
    Zweig, Katharina A.
    COMPLEX NETWORKS VIII, 2017, : 31 - 43
  • [33] An Analysis of Centrality Measures for Complex and Social Networks
    Grando, Felipe
    Noble, Diego
    Lamb, Luis C.
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [34] On the Role of Network Centrality in the Controllability of Complex Networks
    Bof, Nicoletta
    Baggio, Giacomo
    Zampieri, Sandro
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2017, 4 (03): : 643 - 653
  • [35] Group based centrality for immunization of complex networks
    Saxena, Chandni
    Doja, M. N.
    Ahmad, Tanvir
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 508 : 35 - 47
  • [36] Congestion and centrality in traffic flow on complex networks
    Holme, P
    ADVANCES IN COMPLEX SYSTEMS, 2003, 6 (02): : 163 - 176
  • [37] Modular synchronization in complex networks
    Oh, E
    Rho, K
    Hong, H
    Kahng, B
    PHYSICAL REVIEW E, 2005, 72 (04)
  • [38] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
    徐桂琼
    孟蕾
    涂登琴
    杨平乐
    Chinese Physics B, 2021, (08) : 659 - 667
  • [39] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks*
    Xu, Gui-Qiong
    Meng, Lei
    Tu, Deng-Qin
    Yang, Ping-Le
    CHINESE PHYSICS B, 2021, 30 (08)
  • [40] A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks
    Berahmand, Kamal
    Bouyer, Asgarali
    Samadi, Negin
    CHAOS SOLITONS & FRACTALS, 2018, 110 : 41 - 54