Phase-change material enabled silicon phase shifter actuated by a highly durable graphene microheater

被引:1
|
作者
Liu, Shichang [1 ]
Yang, Xing [1 ]
Lu, Liangjun [1 ,2 ,3 ]
Chen, Jianping [1 ,2 ]
Li, Yu [1 ,2 ]
Chen, Guorui [4 ]
Zhou, Linjie [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China
[2] SJTU Pinghu Inst Intelligent Optoelect, Jiaxing, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Mat Integrated Circuits, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China
来源
JOURNAL OF OPTICAL MICROSYSTEMS | 2024年 / 4卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
integrated photonics; phase-change material; silicon photonics; phase shifter; graphene; NONVOLATILE; MEMORY;
D O I
10.1117/1.JOM.4.3.031207
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a high-efficiency silicon optical phase shifter based on a silicon-Sb2Se3 hybrid integrated waveguide. The optical field has large confinement in the Sb(2)Se(3)material, leading to high optical wave modulation efficiency upon phase change of Sb2Se3. The phase change is initiated by electro-thermal heating generated by a highly durable graphene microheater positioned between the Sb(2)Se(3)strip and the silicon slab of the hybrid waveguide. To effectively couple the phase shifter with single-mode silicon waveguides, we design a two-layer taper structure as a mode spot size converter. Utilizing this phase shifter, we implemented a Mach-Zehnder interferometer structure to function as an optical switch. The number of effective switching events exceeds 30,000, and 66 non-volatile switching levels are obtained. Our work provides an effective solution for introducing highly durable graphene microheaters on silicon-based phase-change platforms.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Tunable dielectric metasurfaces by structuring the phase-change material
    Zhang, Dong-Qin
    Pan, Gui-Ming
    Jin, Zhong-Wei
    Shu, Fang-Zhou
    Jing, Xu-Feng
    Hong, Zhi
    Shen, Chang-Yu
    OPTICS EXPRESS, 2022, 30 (03) : 4312 - 4326
  • [42] Insight into the role of nitrogen in the phase-change material Sb
    Sun, Yuemei
    Yu, Chengtao
    Zhu, Xiaoqin
    Zou, Hua
    Hu, Yifeng
    Pei, Mingxu
    Zhai, Liangjun
    Sui, Yongxing
    Wu, Weihua
    Song, Zhitang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (45)
  • [43] Design of Radially Variant Phase-Change Material Composites
    Hoe, Alison
    Tamraparni, Achutha
    Zhang, Chen
    Elwany, Alaa
    Felts, Jonathan R.
    Shamberger, Patrick J.
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)
  • [45] Study on the heat conduction of phase-change material microcapsules
    Gangtao Zhao
    Xiaohui Xu
    Lin Qiu
    Xinghua Zheng
    Dawei Tang
    Journal of Thermal Science, 2013, 22 : 257 - 260
  • [46] Fundamentals and Applications of Chalcogenide Phase-Change Material Photonics
    Cao, Tun
    Cen, Mengjia
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (08)
  • [47] Insight into the role of oxygen in the phase-change material GeTe
    Zhu, Linggang
    Li, Zhen
    Zhou, Jian
    Miao, Naihua
    Sun, Zhimei
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (14) : 3592 - 3599
  • [48] MELTING AROUND A SHAFT ROTATING IN A PHASE-CHANGE MATERIAL
    MOREGA, AM
    FILIP, AM
    BEJAN, A
    TYVAND, PA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1993, 36 (10) : 2499 - 2509
  • [49] Mechanical properties of concrete containing phase-change material
    Yang, Hong-Bin
    Liu, Tony C.
    Chern, Jenn-Chuan
    Lee, Ming-Hao
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2016, 39 (05) : 521 - 530
  • [50] Graphene microheater for phase change chalcogenides based integrated photonic components [Invited]
    Faneca, Joaquin
    Meyer, Sebastian
    Gardes, F. Y.
    Chigrin, Dmitry N.
    OPTICAL MATERIALS EXPRESS, 2022, 12 (05) : 1991 - 2002