Phase-change material enabled silicon phase shifter actuated by a highly durable graphene microheater

被引:1
|
作者
Liu, Shichang [1 ]
Yang, Xing [1 ]
Lu, Liangjun [1 ,2 ,3 ]
Chen, Jianping [1 ,2 ]
Li, Yu [1 ,2 ]
Chen, Guorui [4 ]
Zhou, Linjie [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China
[2] SJTU Pinghu Inst Intelligent Optoelect, Jiaxing, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Mat Integrated Circuits, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China
来源
JOURNAL OF OPTICAL MICROSYSTEMS | 2024年 / 4卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
integrated photonics; phase-change material; silicon photonics; phase shifter; graphene; NONVOLATILE; MEMORY;
D O I
10.1117/1.JOM.4.3.031207
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a high-efficiency silicon optical phase shifter based on a silicon-Sb2Se3 hybrid integrated waveguide. The optical field has large confinement in the Sb(2)Se(3)material, leading to high optical wave modulation efficiency upon phase change of Sb2Se3. The phase change is initiated by electro-thermal heating generated by a highly durable graphene microheater positioned between the Sb(2)Se(3)strip and the silicon slab of the hybrid waveguide. To effectively couple the phase shifter with single-mode silicon waveguides, we design a two-layer taper structure as a mode spot size converter. Utilizing this phase shifter, we implemented a Mach-Zehnder interferometer structure to function as an optical switch. The number of effective switching events exceeds 30,000, and 66 non-volatile switching levels are obtained. Our work provides an effective solution for introducing highly durable graphene microheaters on silicon-based phase-change platforms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Trilayer Graphene as a Candidate Material for Phase-Change Memory Applications
    Mohamed M Atwa
    Ahmed AlAskalany
    Karim Elgammal
    Anderson D Smith
    Mattias Hammar
    Mikael Östling
    MRS Advances, 2016, 1 (20) : 1487 - 1494
  • [2] Trilayer Graphene as a Candidate Material for Phase-Change Memory Applications
    Atwa, Mohamed M.
    AlAskalany, Ahmed
    Elgammal, Karim
    Smith, Anderson D.
    Hammar, Mattias
    Ostling, Mikael
    MRS ADVANCES, 2016, 1 (20): : 1487 - 1494
  • [3] Durable Phase-Change Memory Architectures Preface
    Hurson, Ali R.
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : IX - X
  • [4] Outstanding phase-change behaviors of GaGeSbTe material for phase-change memory application
    Fang, Wencheng
    Song, Sannian
    Zhao, Jin
    Li, Chengxing
    Cai, Daolin
    Song, Zhitang
    MATERIALS RESEARCH BULLETIN, 2022, 149
  • [5] Advantages of SiSb phase-change material and its applications in phase-change memory
    Zhang, Ting
    Song, Zhitang
    Wang, Feng
    Liu, Bo
    Feng, Songlin
    Chen, Bomy
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [6] Modeling of MEMS Mirrors Actuated by Phase-Change Mechanism
    Torres, David
    Zhang, Jun
    Dooley, Sarah
    Tan, Xiaobo
    Sepulveda, Nelson
    MICROMACHINES, 2017, 8 (05):
  • [7] Tunable metasurfaces enabled by phase-change materials
    Hafermann, Martin
    Semiconductors and Semimetals, 2024, 115 : 1 - 40
  • [8] SMALLEST PHASE-CHANGE MATERIAL TO DATE
    不详
    CHEMICAL & ENGINEERING NEWS, 2013, 91 (38) : 26 - 26
  • [9] Phase-change oscillations in silicon microwires
    Cywar, A.
    Bakan, G.
    Boztug, C.
    Silva, H.
    Gokirmak, A.
    APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [10] Scaling of Silicon Phase-Change Oscillators
    Cywar, Adam
    Dirisaglik, Faruk
    Akbulut, Mustafa
    Bakan, Gokhan
    Steen, Steven
    Silva, Helena
    Gokirmak, Ali
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (11) : 1486 - 1488