Numerical study on stability and accuracy of the fractional step algorithm for the incompressible N-S equations

被引:0
|
作者
Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China [1 ]
机构
来源
Jisuan Lixue Xuebao | 2007年 / 3卷 / 275-279期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] An artificial compressibility based fractional step method for solving time dependent incompressible flow equations. Temporal accuracy and similarity with a monolithic method
    Nithiarasu, P.
    Bevan, R. L. T.
    Murali, K.
    COMPUTATIONAL MECHANICS, 2013, 51 (03) : 255 - 260
  • [42] Solution of N-S equations based on the quadtree cut cell method
    Luo XiLian
    Gu ZhaoLin
    Lei KangBin
    Wang Sheng
    Kiwamu, Kase
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (06): : 877 - 884
  • [43] Numerical study of fractional nonlinear Schrodinger equations
    Klein, Christian
    Sparber, Christof
    Markowich, Peter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2172):
  • [44] On the Stability and Numerical Scheme of Fractional Differential Equations with Application to Biology
    Hattaf, Khalid
    COMPUTATION, 2022, 10 (06)
  • [45] FRACTIONAL STEP METHOD FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON UNSTRUCTURED TRIANGULAR MESHES
    DESPOTIS, GK
    TSANGARIS, S
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (11) : 1273 - 1288
  • [46] An efficient parallel algorithm for the numerical solution of fractional differential equations
    Kai Diethelm
    Fractional Calculus and Applied Analysis, 2011, 14 : 475 - 490
  • [47] Numerical algorithm based on Adomian decomposition for fractional differential equations
    Li, Changpin
    Wang, Yihong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (10) : 1672 - 1681
  • [48] Algebraic Fractional-Step Schemes for Time-Dependent Incompressible Navier–Stokes Equations
    Paola Gervasio
    Fausto Saleri
    Journal of Scientific Computing, 2006, 27 : 257 - 269
  • [49] Solution of N-S equations based on the quadtree cut cell method
    KASE Kiwamu
    Science in China(Series G:Physics,Mechanics & Astronomy), 2009, (06) : 877 - 884
  • [50] Solution of N-S equations based on the quadtree cut cell method
    XiLian Luo
    ZhaoLin Gu
    KangBin Lei
    Sheng Wang
    Kiwamu Kase
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 877 - 884