Personalized federated learning with global information fusion and local knowledge inheritance collaboration

被引:0
|
作者
Li, Hongjiao [1 ]
Xu, Jiayi [1 ]
Jin, Ming [1 ]
Yin, Anyang [1 ]
机构
[1] Shanghai Univ Elect Power, Dept Comp Sci & Engn, 1851 Hucheng Ring Rd, Shanghai 200120, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 01期
关键词
Federated learning; Personalized; Meta-learning; Knowledge distillation;
D O I
10.1007/s11227-024-06529-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional federated learning has shown mediocre performance on heterogeneous data, thus sparking increasing interest in personalized federated learning. Unlike traditional federated learning, which trains a single global consensual model, personalized federated learning allows for the provision of distinct models to different clients. However, existing federated learning algorithms solely optimize either unidirectionally at the server or client side, leading to a dilemma: "Should we prioritize the learned model's generic performance or its personalized performance?" In this paper, we demonstrate the feasibility of simultaneously addressing both aspects. Concretely, we propose a novel dual-duty framework. On the client side, personalized models are utilized to retain local knowledge and integrate global information, minimizing risks associated with each client's experience. On the server side, virtual sample generation approximates second-order gradients, embedding local class structures into the global model to enhance its generalization capability. Utilizing a dual optimization framework termed FedCo, we achieve parallelism of global universality and personalized performance. Finally, theoretical analysis and extensive experiments validate that FedCo surpasses previous solutions, achieving state-of-the-art performance for both general and personalized performance in a variety of heterogeneous data scenarios.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Incorporating Global Information in Local Attention for Knowledge Representation Learning
    Zhao, Yu
    Zhou, Han
    Xie, Ruobing
    Zhuang, Fuzhen
    Li, Qing
    Liu, Ji
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1341 - 1351
  • [22] Knowledge-Aware Parameter Coaching for Personalized Federated Learning
    Zhi, Mingjian
    Bi, Yuanguo
    Xu, Wenchao
    Wang, Haozhao
    Xiang, Tianao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17069 - 17077
  • [23] Privacy-Preserving Heterogeneous Personalized Federated Learning With Knowledge
    Pan, Yanghe
    Su, Zhou
    Ni, Jianbing
    Wang, Yuntao
    Zhou, Jinhao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5969 - 5982
  • [24] A Personalized Federated Learning Method Based on Clustering and Knowledge Distillation
    Zhang, Jianfei
    Shi, Yongqiang
    ELECTRONICS, 2024, 13 (05)
  • [25] Federated Continual Learning via Knowledge Fusion: A Survey
    Yang, Xin
    Yu, Hao
    Gao, Xin
    Wang, Hao
    Zhang, Junbo
    Li, Tianrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 3832 - 3850
  • [26] PRIOR: Personalized Prior for Reactivating the Information Overlooked in Federated Learning
    Shi, Mingjia
    Zhou, Yuhao
    Wang, Kai
    Zhang, Huaizheng
    Huang, Shudong
    Ye, Qing
    Lv, Jiangcheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] A Personalized Federated Learning Algorithm Based on Meta-Learning and Knowledge Distillation
    Sun Y.
    Shi Y.
    Wang Z.
    Li M.
    Si P.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (01): : 12 - 18
  • [28] Federated Learning FedLTailor: A Dynamic Weight Adjustment and Personalized Fusion Approach
    Zheng, Hong
    Li, Shanqin
    IEEE ACCESS, 2024, 12 : 78101 - 78109
  • [29] FedClassAvg: Local Representation Learning for Personalized Federated Learning on Heterogeneous Neural Networks
    Jang, Jaehee
    Ha, Heonseok
    Jung, Dahuin
    Yoon, Sungroh
    51ST INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2022, 2022,
  • [30] EIGAT: Incorporating global information in local attention for knowledge representation learning
    Zhao, Yu
    Feng, Huali
    Zhou, Han
    Yang, Yanruo
    Chen, Xingyan
    Xie, Ruobing
    Zhuang, Fuzhen
    Li, Qing
    KNOWLEDGE-BASED SYSTEMS, 2022, 237