On k-NN method with preprocessing

被引:0
|
作者
University of Information Technology and Management, H. Sucharskiego 2, 35-225 Rzeszow, Poland [1 ]
不详 [2 ]
机构
来源
Fundam Inf | 2006年 / 3卷 / 343-358期
关键词
Data processing;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A Note on the k-NN Density Estimate
    Ding, Jie
    Zhu, Xinshan
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2016, 2016, 9937 : 79 - 88
  • [32] Utilization of K-NN Algorithm for Expectation Maximization Based Classification Method
    Aci, M.
    Inan, C.
    Avci, M.
    2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 786 - 788
  • [33] Exploring the Feature Selection of the EEG Signal Time and Frequency Domain Features for k-NN and Weighted k-NN
    Diah, Theresia K.
    Faqih, Akhmad
    Kusumoputro, Benyamin
    PROCEEDINGS OF 2019 IEEE R10 HUMANITARIAN TECHNOLOGY CONFERENCE (IEEE R10 HTC 2019), 2019, : 196 - 199
  • [34] Effective construction of classifiers with the k-NN method supported by a concept ontology
    Bazan, Jan
    Bazan-Socha, Stanislawa
    Ochab, Marcin
    Buregwa-Czuma, Sylwia
    Nowakowski, Tomasz
    Wozniak, Miroslaw
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (04) : 1497 - 1510
  • [35] Use of the k-NN method to estimate travel time in Central London
    Technical Services Group, London Buses, Transport for London
    不详
    Traffic Eng. Control, 2006, 10 (408-411):
  • [36] SAR image classification method based on Gabor feature and K-NN
    Wang, Zhiru
    Chen, Liang
    Shi, Hao
    Qi, Baogui
    Wang, Guanqun
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6734 - 6736
  • [37] Effective construction of classifiers with the k-NN method supported by a concept ontology
    Jan Bazan
    Stanisława Bazan-Socha
    Marcin Ochab
    Sylwia Buregwa-Czuma
    Tomasz Nowakowski
    Mirosław Woźniak
    Knowledge and Information Systems, 2020, 62 : 1497 - 1510
  • [38] A new k-NN based Open-Set Recognition method
    Hui, Xue-meng
    Liu, Zhun-ga
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 481 - 486
  • [39] Improving the k-NN method: Rough Set in edit training set
    Caballero, Yaile
    Bello, Rafael
    Alvarez, Delia
    Garcia, Maria M.
    Pizano, Yaimara
    PROFESSIONAL PRACTICE IN ARTIFICIAL INTELLIGENCE, 2006, 218 : 21 - +
  • [40] Prediction of protein subcellular locations using fuzzy k-NN method
    Huang, Y
    Li, Y
    BIOINFORMATICS, 2004, 20 (01) : 21 - 28