Landsat-8 Sensor and Sentinel-2 Sensor Data Fusion With Multiscale Detailed Information

被引:0
|
作者
Wang, Peng [1 ,2 ,3 ,4 ]
Du, Jun [4 ]
Wen, Xiongfei [2 ,5 ]
Hu, Caiping [1 ,3 ,6 ]
Ge, Lin [3 ]
Huang, Mingxuan [4 ]
机构
[1] China Univ Min & Technol Beijing, Natl Engn Res Ctr Coal Mine Water Hazard Controlli, Beijing, Peoples R China
[2] Changjiang River Sci Res Inst, Hubei Prov Key Lab Basin Water Resource & Ecoenvir, Wuhan 430010, Peoples R China
[3] Shandong Prov Geomineral Engn Explorat Inst, Inst Hydrogeol & Engn Geol 801, Shandong Prov Bur Geol & Mineral Resources, Jinan 250014, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Key Lab Radar Imaging & Microwave Photon, Minist Educ, Nanjing 210016, Peoples R China
[5] Changjiang River Sci Res Inst, Spatial Informat Technol Applicat Res Dept, Wuhan 430010, Peoples R China
[6] Shandong Engn Res Ctr Environm Protect & Remediat, Jinan 250014, Peoples R China
关键词
Remote sensing; Earth; Artificial satellites; Sensors; Data integration; Spatial resolution; Interpolation; High frequency; Sensor fusion; Low-pass filters; Sensor applications; filtering; Landsat-8; remote sensing data; sensor data fusion; Sentinel-2; 8; OLI;
D O I
10.1109/LSENS.2024.3499361
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
<!--?Firstputimage type="graphicalabstract" lines="9" overhang="5.50cm" id="lsens.gagraphic-3499361.eps"?-->With the increasing demand for high temporal and spatial resolution multispectral data sequences, many studies have been carried out on fusion on Landsat-8 and Sentinel-2 sensor data. However, current fusion methods suffer from the loss of detailed spatial and spectral information. To address this problem, a Landsat-8 and Sentinel-2 data fusion with multiscale detailed information (MSDI) method is proposed. MSDI combines well the initial spatial prediction obtained from the Landsat-8 data at the target date and the detailed part extracted from the Sentinel-2 data at the reference date. Thin plate spline interpolation is implemented on the Landsat-8 data for upsampling. Smoothing-sharpening filter (SSIF) is employed to separate the high- and low-frequency components of data from the two sensors. The multiscale SSIF is then utilized to migrate the details from the Sentinel-2 data to the upsampled Landsat-8 data. Experiments at two sites confirm that the proposed MSDI method could efficiently generate Sentinel-2-like data with high spatial and spectral resolution.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems
    Pahlevan, Nima
    Chittimalli, Sandeep K.
    Balasubramanian, Sundarabalan V.
    Vellucci, Vincenzo
    REMOTE SENSING OF ENVIRONMENT, 2019, 220 : 19 - 29
  • [22] The use of Landsat-8 and Sentinel-2 imageries in detecting and mapping rubber trees
    Yusof, Nurasmalaily
    Shafri, Helmi Zulhaidi Mohd
    Shaharum, Nur Shafira Nisa
    JOURNAL OF RUBBER RESEARCH, 2021, 24 (01) : 121 - 135
  • [23] Comparing Sentinel-1, Sentinel-2, and Landsat-8 data in the early recognition of irrigated areas in central Italy
    Vergni, Lorenzo
    Vinci, Alessandra
    Todisco, Francesca
    Santaga, Francesco Saverio
    Vizzari, Marco
    JOURNAL OF AGRICULTURAL ENGINEERING, 2021, 52 (04)
  • [24] The use of Landsat-8 and Sentinel-2 imageries in detecting and mapping rubber trees
    Nurasmalaily Yusof
    Helmi Zulhaidi Mohd Shafri
    Nur Shafira Nisa Shaharum
    Journal of Rubber Research, 2021, 24 : 121 - 135
  • [25] Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product
    Shao, Zhenfeng
    Cai, Jiajun
    Fu, Peng
    Hu, Leiqiu
    Liu, Tao
    REMOTE SENSING OF ENVIRONMENT, 2019, 235
  • [26] Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data
    Chakhar, Amal
    Ortega-Terol, Damian
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Ortega, Jose E.
    Moreno, Miguel A.
    REMOTE SENSING, 2020, 12 (11)
  • [27] Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
    Gavilan, Viviana
    Lillo-Saavedra, Mario
    Holzapfel, Eduardo
    Rivera, Diego
    Garcia-Pedrero, Angel
    WATER, 2019, 11 (11)
  • [28] Enhancing Surface Water Monitoring through Multi-Satellite Data-Fusion of Landsat-8/9, Sentinel-2, and Sentinel-1 SAR
    Declaro, Alexis
    Kanae, Shinjiro
    REMOTE SENSING, 2024, 16 (17)
  • [29] Data Reduction Using Statistical and Regression Approaches for Ice Velocity Derived by Landsat-8, Sentinel-1 and Sentinel-2
    Derkacheva, Anna
    Mouginot, Jeremie
    Millan, Romain
    Maier, Nathan
    Gillet-Chaulet, Fabien
    REMOTE SENSING, 2020, 12 (12)
  • [30] Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification
    Poortinga, Ate
    Tenneson, Karis
    Shapiro, Aurelie
    Quyen Nquyen
    San Aung, Khun
    Chishtie, Farrukh
    Saah, David
    REMOTE SENSING, 2019, 11 (07)