Uncertainty-aware consistency regularization for cross-domain semantic segmentation

被引:0
|
作者
Zhou, Qianyu [1 ]
Feng, Zhengyang [1 ]
Gu, Qiqi [1 ]
Cheng, Guangliang [2 ]
Lu, Xuequan [3 ]
Shi, Jianping [2 ]
Ma, Lizhuang [1 ]
机构
[1] Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai,200240, China
[2] SenseTime Research, 1900 Hongmei Road, Shanghai,200233, China
[3] Deakin University, 75 Pigdons Rd, Waurn Ponds,VIC,3216, Australia
基金
中国国家自然科学基金;
关键词
Consistency regularization - Cross-domain - Domain adaptation - Domain semantics - Regularisation - Semantic segmentation - Target domain - Teacher models - Transfer learning - Uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model. Besides, the local regional consistency in UDA has been largely neglected, and only extracting the global-level pattern information is not powerful enough for feature alignment due to the abuse use of contexts. To this end, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. Firstly, we introduce an uncertainty-guided consistency loss with a dynamic weighting scheme by exploiting the latent uncertainty information of the target samples. As such, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. We further reveal the reason why the current consistency regularization is often unstable in minimizing the domain discrepancy. Besides, we design a ClassDrop mask generation algorithm to produce strong class-wise perturbations. Guided by this mask, we propose a ClassOut strategy to realize effective regional consistency in a fine-grained manner. Experiments demonstrate that our method outperforms the state-of-the-art methods on four domain adaptation benchmarks, i.e., GTAV → Cityscapes, SYNTHIA → Cityscapes, Virtual KITTI ⟶ KITTI and Cityscapes ⟶ KITTI. © 2022 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [21] Cross-Domain Grouping and Alignment for Domain Adaptive Semantic Segmentation
    Kim, Minsu
    Joung, Sunghun
    Kim, Seungryong
    Park, Jungin
    Kim, Ig-Jae
    Sohn, Kwanghoon
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1799 - 1807
  • [22] Cross-Genre and Cross-Domain Detection of Semantic Uncertainty
    Szarvas, Gyoergy
    Vincze, Veronika
    Farkas, Richard
    Mora, Gyoergy
    Gurevych, Iryna
    COMPUTATIONAL LINGUISTICS, 2012, 38 (02) : 335 - 367
  • [23] Adversarial Domain Adaptation with Semantic Consistency for Cross-Domain Image Classification
    Cao, Manliang
    Zhou, Xiangdong
    Xu, Yiming
    Pang, Yue
    Yao, Bo
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 259 - 268
  • [24] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [25] Cross-Domain Few-Shot Semantic Segmentation
    Lei, Shuo
    Zhang, Xuchao
    He, Jianfeng
    Chen, Fanglan
    Du, Bowen
    Lu, Chang-Tien
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 73 - 90
  • [26] TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation
    Gong, Rui
    Danelljan, Martin
    Dai, Dengxin
    Paudel, Danda Pani
    Chhatkuli, Ajad
    Yu, Fisher
    Van Gool, Luc
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 19 - 35
  • [27] A global reweighting approach for cross-domain semantic segmentation
    Zhang, Yuhang
    Tian, Shishun
    Liao, Muxin
    Hua, Guoguang
    Zou, Wenbin
    Xu, Chen
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 130
  • [28] Uncertainty-Aware Guided Volume Segmentation
    Prassni, Joerg-Stefan
    Ropinski, Timo
    Hinrichs, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1358 - 1365
  • [29] Uncertainty-aware LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buscher, Daniel
    Burgard, Wolfram
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 8277 - 8283
  • [30] Uncertainty-Aware RGBD Image Segmentation
    Yu, Chengxiao
    Wang, Xin
    Wang, Junqiu
    Zha, Hongbin
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBORG AND BIONIC SYSTEMS (CBS), 2017, : 97 - 102