Influence of solid loading on microstructure evolution and thermal conductivity of aluminum nitride ceramics fabricated by digital light processing 3D printing

被引:0
|
作者
Tang, Yuxin [1 ,2 ,3 ]
Hu, Song [1 ,3 ]
Xue, Zhenhai [1 ]
Zhou, Guohong [1 ,3 ]
机构
[1] Shanghai Inst Ceram, Chinese Acad Sci, State Key Lab High Performance Ceram & Superfine M, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DLP 3D printing; AlN ceramic; Solid loading; Microstructure evolution; Thermal management;
D O I
10.1016/j.jeurceramsoc.2024.117028
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Efficient thermal management is essential to reduce hot spot temperature of high-power opto-electronic components and improve their working efficiency. In this work, AlN ceramics with high density and thermal conductivity properties were fabricated using a joint process of digital light processing (DLP) 3D printing and micropressure-assisted sintering method. Effects of solid loading on microstructure evolution and thermal properties of the ceramics were systematically discussed. AlN ceramic mini-channel heat sinks were designed and fabricated using the optimized DLP 3D printing and sintering parameters. The thermal management performances of the ceramic heat sinks were evaluated by investigating the optoelectronic property of the encapsulated laser diode module. Results indicated that the laser diode module could be long-timely operated at full driven power. This study provided a new strategy for fabricating high performance AlN ceramics with complex configurations and highlighted the technical potential of AlN ceramic heat sink with compact coolant channels.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Digital light processing 3D printing of porous ceramics: A systematic analysis from a debinding perspective
    Kim, Insup
    Yoon, Yong-Jin
    ADDITIVE MANUFACTURING, 2024, 93
  • [22] "Invisible" Digital Light Processing 3D Printing with Near Infrared Light
    Stevens, Lynn M.
    Tagnon, Clotilde
    Page, Zachariah A.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 22912 - 22920
  • [23] Effect of Powder Particle Size on the Properties of Diamond Composites Fabricated by Digital Light Processing 3D Printing
    Yang W.
    Meng X.
    Deng X.
    Cailiao Daobao/Materials Reports, 2023, 37 (12):
  • [24] Reconfigurable Polymer Networks for Digital Light Processing 3D Printing
    Fang, Zizheng
    Shi, Yunpeng
    Zhang, Yuhua
    Zhao, Qian
    Wu, Jingjun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (13) : 15584 - 15590
  • [25] Recyclable thermosetting polymers for digital light processing 3D printing
    Chen, Zhiqiang
    Yang, Meng
    Ji, Mengke
    Kuang, Xiao
    Qi, H. Jerry
    Wang, Tiejun
    MATERIALS & DESIGN, 2021, 197
  • [26] THE QUALITY OF SLICING TECHNOLOGIES FOR DIGITAL LIGHT PROCESSING 3D PRINTING
    Kwok, Tsz-Ho
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [27] 3D printing of glass aspheric lens by digital light processing
    Zhu, Dexing
    Zhang, Jian
    Xu, Qiao
    Li, Yaguo
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 116 : 40 - 47
  • [28] The application of synthetic wollastonite in digital light processing 3D printing
    Gineika, Andrius
    Baltakys, Kestutis
    Navaruckiene, Aukse
    Ostrauskaite, Jolita
    Skliutas, Edvinas
    Malinauskas, Mangirdas
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 48106 - 48115
  • [29] Advances in materials and technologies for digital light processing 3D printing
    Nam, Jisoo
    Kim, Miso
    NANO CONVERGENCE, 2024, 11 (01):
  • [30] Digital light processing 3D printing of conductive complex structures
    Mu, Quanyi
    Wang, Lei
    Dunn, Conner K.
    Kuang, Xiao
    Duan, Feng
    Zhang, Zhong
    Qi, H. Jerry
    Wang, Tiejun
    ADDITIVE MANUFACTURING, 2017, 18 : 74 - 83