Perovskite solar cells (PSCs) have emerged as a viable photovoltaic technology, with significant improvements in power conversion efficiency (PCE) over the past decade. This review provides a comprehensive overview of the progress, challenges, and future prospects of PSCs. Historical milestones, including unique properties of perovskite materials, device design advancements and perovskite composition optimization, are discussed. The paper explores the fundamental aspects of perovskites, such as their crystal structures, fabrication techniques, from solution-based methods to vapor deposition methods and strategies like band gap tuning and tandem solar cell designs to overcome the Shockley-Queisser limit. Challenges related to stability, scalability, and degradation mechanisms are critically analyzed, with emphasis on intrinsic and extrinsic instability factors and mitigation strategies, considering the effects of environmental stressors and encapsulation techniques. Finally, the review concludes by outlining future research directions and the potential of PSCs to revolutionize the photovoltaic industry.