Comparative study of flame propagation characteristics of methane explosion in pipeline with different venting structures at different ignition positions

被引:1
|
作者
Wang, Qiuhong [1 ]
Zhao, Dong [1 ]
Deng, Jun [1 ]
Luo, Zhenmin [1 ]
Dong, Guoqiang [2 ]
Zhu, Leilei [1 ]
Xue, Yunfan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Safety Sci & Engn, Xian 710054, Peoples R China
[2] Inst Hyg Ordnance Ind, Xian 710065, Peoples R China
关键词
Methane pipeline; Explosion vent; Flame propagation velocity; Explosion pressure; Flame temperature; GAS EXPLOSION;
D O I
10.1016/j.fuel.2024.133317
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effect of central ignition and four types of explosion vents (circular vents with areas of 22.89, 15.20, and 9.07 cm2 and a cross-shaped vent with an area of 15.20 cm2) on the flame propagation of methane explosions was investigated by using a rectangular blast pipe system and analyzed in comparison with the closed-end ignition condition. Central ignition shows that the flame propagation velocity on both sides of the pipe increases and decreases. The peak pressure decreases as the vent area increases. Specifically, Pm (9.07 cm2) > Pm (15.20 cm2) > Pm (22.89 cm2). The flame temperature at the closed end was consistently higher than that at the vented end. The vm values in the closed-end ignition pipe increased by 20.0 %, 41.8 %, 45.8 %, 40.9 %, 31.5 %, and 19.0 %, respectively, over the central ignition position when the methane concentration was 8-13 %. When the methane concentration deviates from the stoichiometric ratio, the difference in peak pressure between closed-end and central ignition can be up to 0.15 MPa, which is 26.7 % of that of central ignition. The peak temperatures observed at points 1-2 in the closed-end ignition were consistently higher than the central ignition.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Experimental study on methane explosion characteristics with different types of porous media
    Duan, Yulong
    Wang, Shuo
    Yang, Yanling
    Li, Yuanbing
    Zheng, Kai
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2021, 69
  • [22] Study on methane explosion overpressure evolution law and flame propagation characteristics in diagonal pipe networks
    Shi B.
    Niu Y.
    Zhang L.
    Zhang Y.
    Zhong Z.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2021, 49 (01): : 257 - 263
  • [23] Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline
    Zhang, Shulin
    Bi, Mingshu
    Yang, Mingrui
    Gan, Bo
    Jiang, Haipeng
    Gao, Wei
    POWDER TECHNOLOGY, 2020, 359 : 172 - 180
  • [24] Study on the explosion characteristics and flame propagation of hydrogen-methane-air mixtures in a closed vessel
    Liu, Lu
    Luo, Zhenmin
    Su, Bin
    Song, Fangzhi
    Wu, Pengzhi
    Wang, Tao
    Deng, Jun
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 87
  • [25] Experimental study on flame propagation characteristics of gas explosion
    Luo, Zhenmin
    Jun, Deng
    Hui, Zhang
    Progress in Mining Science and Safety Technology, Pts A and B, 2007, : 1275 - 1279
  • [26] Flame propagation characteristics of deposited coal dust explosion induced by shock waves of different intensities
    Pei B.
    Zhang Z.
    Pan R.
    Yu M.
    Chen L.
    Wen X.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 (02): : 498 - 506
  • [27] Experimental study on the explosion characteristic and flame propagation of methanol spray at different injection pressures
    Wu, Feng
    Pan, Xuhai
    Wang, He
    Hua, Min
    Yu, Hao
    Zang, Xiaowei
    Jiang, Juncheng
    FUEL, 2022, 325
  • [28] Study on the influence of ignition position on the explosion characteristics of methane-air premix in a semi-closed pipeline
    Hou, Zhenhai
    Wang, Deming
    Zhang, Wei
    Luo, Shengyun
    Lu, Yansen
    Tian, Siyu
    Zhong, Qiu
    Xu, Zuoming
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 172 : 642 - 651
  • [29] Effects of ammonia on the explosion and flame propagation characteristics of methane-air mixtures
    Luo, Zhenmin
    Wang, Tao
    Ren, Junying
    Deng, Jun
    Shu, Chimin
    Huang, Anqi
    Cheng, Fangming
    Wen, Zhenyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 47 : 120 - 128
  • [30] Methane–air explosion characteristics with different obstacle configurations
    Wen Xiaoping
    Yu Minggao
    Ji Wentao
    Yue Meng
    Chen Junjie
    InternationalJournalofMiningScienceandTechnology, 2015, 25 (02) : 213 - 218