RMFDNet: Redundant and Missing Feature Decoupling Network for salient object detection

被引:0
|
作者
Zhou, Qianwei [1 ,2 ]
Wang, Jintao [1 ,2 ]
Li, Jiaqi [5 ]
Zhou, Chen [1 ]
Hu, Haigen [1 ,2 ]
Hu, Keli [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[2] Key Lab Visual Media Intelligent Proc Technol Zhej, Hangzhou 310023, Peoples R China
[3] Shaoxing Univ, Dept Comp Sci & Engn, Shaoxing 312000, Peoples R China
[4] Hangzhou Med Coll, Affiliated Peoples Hosp, Canc Ctr, Dept Gastroenterol,Zhejiang Prov Peoples Hosp, Hangzhou 310014, Peoples R China
[5] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Salient object detection; Feature decoupling; Depth map; Redundant and Missing Feature Decoupling; Network;
D O I
10.1016/j.engappai.2024.109459
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many salient object detection methods have utilized edge contours to constrain the solution space. This approach aims to reduce the omission of salient features and minimize the inclusion of non-salient features. To further leverage the potential of edge-related information, this paper proposes a Redundant and Missing Feature Decoupling Network (RMFDNet). RMFDNet primarily consists of a segment decoder, a complement decoder, a removal decoder, and a recurrent repair encoder. The complement and removal decoders are designed to directly predict the missing and redundant features within the segmentation features. These predicted features are then processed by the recurrent repair encoder to refine the segmentation features. Experimental results on multiple Red-Green-Blue (RGB) and Red-Green-Blue-Depth (RGB-D) benchmark datasets, as well as polyp segmentation datasets, demonstrate that RMFDNet significantly outperforms previous state-of-the-art methods across various evaluation metrics. The efficiency, robustness, and generalization capability of RMFDNet are thoroughly analyzed through a carefully designed ablation study. The code will be made available upon paper acceptance.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Learning Salient Feature for Salient Object Detection Without Labels
    Li, Shuo
    Liu, Fang
    Jiao, Licheng
    Liu, Xu
    Chen, Puhua
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1012 - 1025
  • [32] Multi-attention guided feature fusion network for salient object detection
    Li, Anni
    Qi, JinQing
    Lu, Huchuan
    NEUROCOMPUTING, 2020, 411 : 416 - 427
  • [33] IMSFNet: integrated multi-source feature network for salient object detection
    Xia, Chenxing
    Sun, Yanguang
    Fang, Xianjin
    Ge, Bin
    Gao, Xiuju
    Li, Kuan-Ching
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22228 - 22248
  • [34] Salient Object Detection by Lossless Feature Reflection
    Zhang, Pingping
    Liu, Wei
    Lu, Huchuan
    Shen, Chunhua
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1149 - 1155
  • [35] Local and Global Feature Aggregation-Aware Network for Salient Object Detection
    Da, Zikai
    Gao, Yu
    Xue, Zihan
    Cao, Jing
    Wang, Peizhen
    ELECTRONICS, 2022, 11 (02)
  • [36] IMSFNet: integrated multi-source feature network for salient object detection
    Chenxing Xia
    Yanguang Sun
    Xianjin Fang
    Bin Ge
    Xiuju Gao
    Kuan-Ching Li
    Applied Intelligence, 2023, 53 : 22228 - 22248
  • [37] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [38] Multi-branch feature fusion and refinement network for salient object detection
    Yang, Jinyu
    Shi, Yanjiao
    Zhang, Jin
    Guo, Qianqian
    Zhang, Qing
    Cui, Liu
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [39] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150
  • [40] Unsupervised Feature Selection for Salient Object Detection
    Gopalakrishnan, Viswanath
    Hu, Yiqun
    Rajan, Deep
    COMPUTER VISION - ACCV 2010, PT II, 2011, 6493 : 15 - 26