A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative

被引:0
|
作者
Ji, Dehong [1 ]
Yang, Yitao [1 ]
机构
[1] College of Science, Tianjin University of Technology, Tianjin,300384, China
关键词
Iterative methods;
D O I
暂无
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
The fractional boundary value problem with Riemann-Liouville derivative with respect to a Kernel function φ(t) was investigated by us. We used a technique called monotone iteration. The positive solutions for the fractional problem were found by us. Moreover, the iterative format was established. © 2020. All Rights Reserved.
引用
收藏
页码:1 / 5
相关论文
共 50 条
  • [41] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236
  • [42] Positive solutions for a boundary-value problem with Riemann–Liouville fractional derivative*
    Jiafa Xu
    Zhongli Wei
    Youzheng Ding
    Lithuanian Mathematical Journal, 2012, 52 : 462 - 476
  • [43] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [44] RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH VARYING ARGUMENTS
    Ravikumar, N.
    Latha, S.
    MATEMATICKI VESNIK, 2012, 64 (01): : 17 - 23
  • [45] Regional Boundary Observability for Semilinear Fractional Systems with Riemann-Liouville Derivative
    Zguaid, Khalid
    El Alaoui, Fatima Zahrae
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (05) : 420 - 437
  • [46] Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives
    Fu, Zhengqing
    Bai, Shikun
    O'Regan, Donal
    Xu, Jiafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [47] Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem
    Al-Qurashi, Maysaa
    Ragoub, Lakhdar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1447 - 1452
  • [48] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [49] Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem
    Ledesma, Cesar E. Torres
    Bonilla, Manuel C. Montalvo
    ADVANCES IN OPERATOR THEORY, 2021, 6 (04)
  • [50] ON A PROBLEM FOR MIXED TYPE EQUATION WITH PARTIAL RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Repin, O. A.
    Tarasenko, A. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (04): : 636 - 643