A hybrid approach of evidence theory and rough sets for ISS risk assessment

被引:1
|
作者
Feng, Nan [1 ]
Xie, Jing [1 ]
机构
[1] Tianjin University, Tianjin, China
关键词
D O I
10.4304/jnw.7.2.337-344
中图分类号
学科分类号
摘要
引用
收藏
页码:337 / 344
相关论文
共 50 条
  • [31] Rough sets approach to KDD
    An, LP
    Wang, YN
    Tong, LY
    PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 29 - 33
  • [32] Commercial Banks' Credit Risk Assessment Based on Rough Sets and SVM
    Lv Guo-liang
    Peng Long
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 10351 - +
  • [33] AN ALTERNATIVE APPROACH TO ROUGH SETS
    KRAMOSIL, I
    KYBERNETIKA, 1992, 28 (01) : 1 - 25
  • [34] Probabilistic approach to rough sets
    Ziarko, Wojciech
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 49 (02) : 272 - 284
  • [35] A unified framework for characterizing rough sets with evidence theory in various approximation spaces
    Tan, Anhui
    Wu, Wei-Zhi
    Tao, Yuzhi
    INFORMATION SCIENCES, 2018, 454 : 144 - 160
  • [36] GDTRSET: a generalized decision-theoretic rough sets based on evidence theory
    Chen, Luyuan
    Deng, Yong
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL3) : S3341 - S3362
  • [37] GDTRSET: a generalized decision-theoretic rough sets based on evidence theory
    Luyuan Chen
    Yong Deng
    Artificial Intelligence Review, 2023, 56 : 3341 - 3362
  • [38] Childhood leukaemia relapse risk factors. A rough sets approach
    Podraza, W
    Podraza, H
    MEDICAL INFORMATICS AND THE INTERNET IN MEDICINE, 1999, 24 (02): : 91 - 108
  • [39] Hybrid Approach Using Rough Sets and Fuzzy Logic to Pattern Recognition Task
    Zolnierek, Andrzej
    Majak, Marcin
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 421 - 430
  • [40] A hybrid feature selection approach based on the Bayesian network classifier and Rough sets
    Pan, Li
    Zheng, Hong
    Li, Li
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2008, 5009 : 707 - +