Per- and polyfluoroalkyl substances (PFAS) in homegrown crops: Accumulation and human risk assessment

被引:0
|
作者
Lasters, Robin [1 ,2 ]
Groffen, Thimo [1 ,2 ]
Eens, Marcel [2 ]
Bervoets, Lieven [1 ]
机构
[1] ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp,2020, Belgium
[2] Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
关键词
D O I
10.1016/j.chemosphere.2024.143208
中图分类号
学科分类号
摘要
Homegrown crops can present a significant exposure source of per- and polyfluoroalkyl substances (PFAS) to humans. Field studies studying PFAS accumulation in multiple vegetable food categories and examining the potential influence of soil characteristics on vegetable bioavailability under realistic exposure conditions are very scarce. Crop PFAS accumulation depends on a complex combination of factors. The physicochemical differences among the numerous PFAS makes risk assessment very challenging. Thus, simplification of this complexity into key factors that govern crop PFAS accumulation is critical. This study analyzed 29 targeted legacy, precursor and emerging PFAS in the vertical soil profile (0–45 cm depth), rainwater and edible crop parts of 88 private gardens, at different distances from a major fluorochemical plant. Gardens closer to the plant site showed higher soil concentrations which could be linked with historical and recent industrial emissions. Most compounds showed little variation along the soil depth profile, regardless of the distance from the plant site, which could be due to gardening practices. Annual crops consistently accumulated higher sum PFAS concentrations than perennials. Highest concentrations were observed in vegetables, followed by fruits and walnuts. Single soil-crop relationships were weak, which indicated that other factors (e.g., porewater) may be better measures of bioavailability in homegrown crop accumulation. Regression models, which additionally considered soil characteristics showed limited predictive power (all R2 ≤ 35%), possibly due to low variability in crop concentrations. Human intake estimations revealed that the PFAS exposure risk via crop consumption was similar nearby and remotely from the plant site, although the contribution to the overall dietary exposure can be relatively large. The tolerable weekly intake was frequently exceeded with respect to fruit and vegetable consumption, thus potential health risks cannot be ruled out. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [41] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [42] Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)
    Clark, Rebecca B.
    Dick, Jeffrey E.
    CHEMICAL COMMUNICATIONS, 2021, 57 (66) : 8121 - 8130
  • [43] Tools for Investigating the Expanding Per- and Polyfluoroalkyl Substances (PFAS) Universe
    Schwichtenberg, Trevor
    LCGC NORTH AMERICA, 2022, 40 (11) : 546 - 548
  • [44] Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS)
    Joseph, Kara M.
    Boatman, Anna K.
    Dodds, James N.
    Kirkwood-Donelson, Kaylie I.
    Ryan, Jack P.
    Zhang, Jian
    Thiessen, Paul A.
    Bolton, Evan E.
    Valdiviezo, Alan
    Sapozhnikova, Yelena
    Rusyn, Ivan
    Schymanski, Emma L.
    Baker, Erin S.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [45] An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS)
    Shojaei, Marzieh
    Kumar, Naveen
    Guelfo, Jennifer L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14517 - 14527
  • [46] Per- and polyfluoroalkyl substances (PFAS) at the interface of biological and environmental systems
    Apul, Onur
    Howell, Caitlin
    Hatinoglu, M. Dilara
    BIOINTERPHASES, 2023, 18 (05)
  • [47] Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)-A review
    Paris-Davila, Tamara
    Gaines, Linda G. T.
    Lucas, Katherine
    Nylander-French, Leena A.
    AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, 2023, 66 (05) : 393 - 410
  • [48] Electrochemical methods for treatment of per- and polyfluoroalkyl substances (PFAS): A review
    Tan, Benjamin Tze-Wei
    Abu Bakar, Noor Hana Hanif
    Lee, Hooi Ling
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [49] Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)-A review
    Al Amin, Md
    Sobhani, Zahra
    Liu, Yanju
    Dharmaraja, Raja
    Chadalavada, Sreenivasulu
    Naidu, Ravi
    Chalker, Justin M.
    Fang, Cheng
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2020, 19
  • [50] Hair determination of per- and polyfluoroalkyl substances (PFAS) in the Italian population
    Piva, E.
    Giorgetti, A.
    Ioime, P.
    Morini, L.
    Freni, F.
    Lo Faro, F.
    Pirani, F.
    Montisci, M.
    Fais, P.
    Pascali, J. P.
    TOXICOLOGY, 2021, 458