Joint gravity and gravity gradient inversion based on deep learning

被引:0
|
作者
基于深度学习的重力异常与重力梯度异常联合反演
机构
[1] [1,Zhang, Zhihou
[2] Liao, Xiaolong
[3] Cao, Yunyong
[4] 4,Hou, Zhenlong
[5] Fan, Xiangtai
[6] 1,Xu, Zhengxuan
[7] Lu, Runqi
[8] Feng, Tao
[9] Yao, Yu
[10] Shi, Zeyu
来源
| 1600年 / Science Press卷 / 64期
关键词
Convolutional neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Inversion Reconstruction of Gravity Potential Based on Gravity Gradients
    M. Dobróka
    L. Völgyesi
    Mathematical Geosciences, 2008, 40 : 299 - 311
  • [42] Gradient optimization method for tunnel resistivity and chargeability joint inversion based on deep learning
    Jiang, Peng
    Liu, Benchao
    Tang, Yuting
    Liu, Zhengyu
    Pang, Yonghao
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 144
  • [43] Gravity data density interface inversion based on U-net deep learning network
    Li Yang
    Han LiGuo
    Zhou Shuai
    Lin Tao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (01): : 401 - 411
  • [44] A Deep Learning Gravity Inversion Method Based on a Self-Constrained Network and Its Application
    Zhou, Shuai
    Wei, Yue
    Lu, Pengyu
    Yu, Guangrui
    Wang, Shuqi
    Jiao, Jian
    Yu, Ping
    Zhao, Jianwei
    REMOTE SENSING, 2024, 16 (06)
  • [45] Joint Inversion of Gravity Gradient Tensor Data Based on L1 and L2 Norms
    Chen, Bo
    Li, Siyang
    Sun, Ya
    Du, Jinsong
    Liu, Jianxin
    Qi, Guoheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Three-dimensional joint inversion of gravity, magnetic and magnetotelluric data based on cross-gradient theory
    Yan ZhengWen
    Tan HanDong
    Peng Miao
    Kong WenXin
    Wu PingPing
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (02): : 736 - 752
  • [47] Real-Time Joint Filtering of Gravity and Gravity Gradient Data Based on Improved Kalman Filter
    Yuan, Yuan
    Qin, Gang
    Li, Da
    Zhong, Min
    Shen, Yingchun
    Ouyang, Yongzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [48] Cross-gradient joint inversion of 3D borehole gravity and magnetic data for deep mineral resources exploration
    Xu K.
    Ji C.
    Pang Z.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2024, 48 (03): : 65 - 74
  • [49] Three-dimensional cooperative inversion of airborne magnetic and gravity gradient data using deep-learning techniques
    Hu, Yanyan
    Wei, Xiaolong
    Wu, Xuqing
    Sun, Jiajia
    Huang, Yueqin
    Chen, Jiefu
    GEOPHYSICS, 2024, 89 (01) : WB67 - WB79
  • [50] Generalized model for a Moho inversion from gravity and vertical gravity-gradient data
    Ye, Zhourun
    Tenzer, Robert
    Sneeuw, Nico
    Liu, Lintao
    Wild-Pfeiffer, Franziska
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (01) : 111 - 128