Multi-Agent Reinforcement Learning in Non-Cooperative Stochastic Games Using Large Language Models

被引:0
|
作者
Alsadat, Shayan Meshkat [1 ]
Xu, Zhe [1 ]
机构
[1] Arizona State Univ, Fac Mech Engn, Tempe, AZ 85281 USA
来源
关键词
Games; Nash equilibrium; Stochastic processes; Q-learning; Convergence; Learning automata; Large language models; Trajectory; Robustness; Probabilistic logic; Reinforcement learning; large language models; stochastic games; reward machines;
D O I
10.1109/LCSYS.2024.3515879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the use of large language models (LLMs) to integrate high-level knowledge in stochastic games using reinforcement learning with reward machines to encode non-Markovian and Markovian reward functions. In non-cooperative games, one challenge is to provide agents with knowledge about the task efficiently to speed up the convergence to an optimal policy. We aim to provide this knowledge in the form of deterministic finite automata (DFA) generated by LLMs (LLM-generated DFA). Additionally, we use reward machines (RMs) to encode the temporal structure of the game and the non-Markovian or Markovian reward functions. Our proposed algorithm, LLM-generated DFA for Multi-agent Reinforcement Learning with Reward Machines for Stochastic Games (StochQ-RM), can learn an equivalent reward machine to the ground truth reward machine (specified task) in the environment using the LLM-generated DFA. Additionally, we propose DFA-based q-learning with reward machines (DBQRM) to find the best responses for each agent using Nash equilibrium in stochastic games. Despite the fact that the LLMs are known to hallucinate, we show that our method is robust and guaranteed to converge to an optimal policy. Furthermore, we study the performance of our proposed method in three case studies.
引用
收藏
页码:2757 / 2762
页数:6
相关论文
共 50 条
  • [21] Cooperative perception in Vehicular Networks using Multi-Agent Reinforcement Learning
    Abdel-Aziz, Mohamed K.
    Samarakoon, Sumudu
    Perfecto, Cristina
    Bennis, Mehdi
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 408 - 412
  • [22] Cooperative Multi-agent Reinforcement Learning Models (CMRLM) for Intelligent Traffic Control
    Vidhate, Deepak A.
    Kulkarni, Parag
    2017 1ST INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND INFORMATION MANAGEMENT (ICISIM), 2017, : 325 - 331
  • [23] Multi-agent Inverse Reinforcement Learning for Certain General-Sum Stochastic Games
    Lin, Xiaomin
    Adams, Stephen C.
    Beling, Peter A.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 66 : 473 - 502
  • [24] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699
  • [25] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [26] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [27] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [28] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [29] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [30] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582