PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8

被引:0
|
作者
Liu, Yuhang [1 ]
Huang, Zhenghua [2 ,4 ]
Song, Qiong [1 ]
Bai, Kun [3 ]
机构
[1] Northeast Elect Power Univ, Sch Comp Sci, Jilin 132012, Peoples R China
[2] Wuchang Univ Technol, Artificial Intelligence Sch, Wuhan 430223, Peoples R China
[3] Xian Modern Control Technol Res Inst, Xian 710065, Peoples R China
[4] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
关键词
Pedestrian and vehicle detection; YOLOv8; Lightweight; Small object; BiFPN;
D O I
10.1016/j.dsp.2024.104857
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the frequent occurrence of urban traffic accidents, fast and accurate detection of pedestrian and vehicle targets has become one of the key technologies for intelligent assisted driving systems. To meet the efficiency and lightweight requirements of smart devices, this paper proposes a lightweight pedestrian and vehicle detection model based on the YOLOv8n model, named PV-YOLO. In the proposed model, receptive-field attention convolution (RFAConv) serves as the backbone network because of its target feature extraction ability, and the neck utilizes the bidirectional feature pyramid network (BiFPN) instead of the original path aggregation network (PANet) to simplify the feature fusion process. Moreover, a lightweight detection head is introduced to reduce the computational burden and improve the overall detection accuracy. In addition, a small target detection layer is designed to improve the accuracy for small distant targets. Finally, to reduce the computational burden further, the lightweight C2f module is utilized to compress the model. The experimental results on the BDD100K and KITTI datasets demonstrate that the proposed PV-YOLO can achieve higher detection accuracy than YOLOv8n and other baseline methods with less model complexity.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Improved Lightweight Military Aircraft Detection Algorithm of YOLOv8
    Liu, Li
    Zhang, Shuo
    Bai, Yu’ang
    Li, Yujian
    Zhang, Chuxia
    Computer Engineering and Applications, 2024, 60 (18) : 114 - 125
  • [42] A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8
    Wang, Fenghua
    Tang, Yuan
    Gong, Zaipeng
    Jiang, Jin
    Chen, Yu
    Xu, Qiang
    Hu, Peng
    Zhu, Hailong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [43] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [44] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [45] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [46] Improved lightweight infrared road target detection method based on YOLOv8
    Yao, Jialong
    Xu, Sheng
    Feijiang, Huang
    Su, Chengyue
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [47] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):
  • [48] LTSCD-YOLO: A Lightweight Algorithm for Detecting Typical Satellite Components Based on Improved YOLOv8
    Tang, Zixuan
    Zhang, Wei
    Li, Junlin
    Liu, Ran
    Xu, Yansong
    Chen, Siyu
    Fang, Zhiyue
    Zhao, Fuchenglong
    REMOTE SENSING, 2024, 16 (16)
  • [49] An Improved Microaneurysm Detection Model Based on SwinIR and YOLOv8
    Zhang, Bowei
    Li, Jing
    Bai, Yun
    Jiang, Qing
    Yan, Biao
    Wang, Zhenhua
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [50] Leather Defect Detection Based on Improved YOLOv8 Model
    Peng, Zirui
    Zhang, Chen
    Wei, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (24):