Domain-guided conditional diffusion model for unsupervised domain adaptation

被引:0
|
作者
Zhang, Yulong [1 ]
Chen, Shuhao [2 ]
Jiang, Weisen [2 ,3 ]
Zhang, Yu [2 ]
Lu, Jiangang [1 ]
Kwok, James T. [3 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
关键词
Diffusion models; Transfer learning; Unsupervised domain adaptation;
D O I
10.1016/j.neunet.2024.107031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Limited transferability hinders the performance of a well-trained deep learning model when applied to new application scenarios. Recently, Unsupervised Domain Adaptation (UDA) has achieved significant progress in addressing this issue via learning domain-invariant features. However, the performance of existing UDA methods is constrained by the possibly large domain shift and limited target domain data. To alleviate these issues, we propose a Domain-guided Conditional Diffusion Model (DCDM), which generates high-fidelity target domain samples, making the transfer from source domain to target domain easier. DCDM introduces class information to control labels of the generated samples, and a domain classifier to guide the generated samples towards the target domain. Extensive experiments on various benchmarks demonstrate that DCDM brings a large performance improvement to UDA.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unsupervised attention-guided domain adaptation model for Acute Lymphocytic Leukemia (ALL) diagnosis
    Baydilli, Yusuf Yargi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 101
  • [32] Cluster-Guided Unsupervised Domain Adaptation for Deep Speaker Embedding
    Mao, Haiquan
    Hong, Feng
    Mak, Man-wai
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 643 - 647
  • [33] Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation
    Zhang, Qiming
    Zhang, Jing
    Liu, Wei
    Tao, Dacheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] Exploring uncertainty in pseudo-label guided unsupervised domain adaptation
    Liang, Jian
    He, Ran
    Sun, Zhenan
    Tan, Tieniu
    PATTERN RECOGNITION, 2019, 96
  • [35] Luminance domain-guided low-light image enhancement
    Li Y.
    Wang C.
    Liang B.
    Cai F.
    Ding Y.
    Neural Computing and Applications, 2024, 36 (21) : 13187 - 13203
  • [36] Adversarial Unsupervised Domain Adaptation with Conditional and Label Shift: Infer, Align and Iterate
    Liu, Xiaofeng
    Guo, Zhenhua
    Li, Site
    Xing, Fangxu
    You, Jane
    Kuo, C. -C. Jay
    El Fakhri, Georges
    Woo, Jonghye
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10347 - 10356
  • [37] Improving unsupervised domain adaptation through class-conditional compact representations
    Rostami M.
    Neural Computing and Applications, 2024, 36 (25) : 15237 - 15254
  • [38] Conditional Adversarial Domain Adaptation
    Long, Mingsheng
    Cao, Zhangjie
    Wang, Jianmin
    Jordan, Michael I.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [39] Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation
    Lin, Hongbin
    Zhang, Yifan
    Qiu, Zhen
    Niu, Shuaicheng
    Gan, Chuang
    Liu, Yanxia
    Tan, Mingkui
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 351 - 368
  • [40] Cross Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    Xie, Guo-Sen
    IEEE ACCESS, 2020, 8 : 139052 - 139069