Domain-guided conditional diffusion model for unsupervised domain adaptation

被引:0
|
作者
Zhang, Yulong [1 ]
Chen, Shuhao [2 ]
Jiang, Weisen [2 ,3 ]
Zhang, Yu [2 ]
Lu, Jiangang [1 ]
Kwok, James T. [3 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
关键词
Diffusion models; Transfer learning; Unsupervised domain adaptation;
D O I
10.1016/j.neunet.2024.107031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Limited transferability hinders the performance of a well-trained deep learning model when applied to new application scenarios. Recently, Unsupervised Domain Adaptation (UDA) has achieved significant progress in addressing this issue via learning domain-invariant features. However, the performance of existing UDA methods is constrained by the possibly large domain shift and limited target domain data. To alleviate these issues, we propose a Domain-guided Conditional Diffusion Model (DCDM), which generates high-fidelity target domain samples, making the transfer from source domain to target domain easier. DCDM introduces class information to control labels of the generated samples, and a domain classifier to guide the generated samples towards the target domain. Extensive experiments on various benchmarks demonstrate that DCDM brings a large performance improvement to UDA.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Domain-Guided Model for Facial Cartoonlization
    Nan Yang
    Bingjie Xia
    Zhi Han
    Tianran Wang
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (10) : 1886 - 1888
  • [2] A Domain-Guided Model for Facial Cartoonlization
    Yang, Nan
    Xia, Bingjie
    Han, Zhi
    Wang, Tianran
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) : 1886 - 1888
  • [3] Anchor Guided Unsupervised Domain Adaptation
    Zhang, Canyu
    Nie, Feiping
    Wang, Rong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1079 - 1090
  • [4] Maximizing conditional independence for unsupervised domain adaptation
    Zhai, Yiming
    Ren, Chuanxian
    Luo, Youwei
    Dai, Daoqing
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [5] Maximizing conditional independence for unsupervised domain adaptation
    Yiming Zhai
    Chuanxian Ren
    Youwei Luo
    Daoqing Dai
    Science China Information Sciences, 2024, 67
  • [6] Maximizing conditional independence for unsupervised domain adaptation
    Yiming ZHAI
    Chuanxian REN
    Youwei LUO
    Daoqing DAI
    Science China(Information Sciences), 2024, 67 (05) : 136 - 149
  • [7] Conditional Independence Induced Unsupervised Domain Adaptation
    Xu, Xiao-Lin
    Xu, Geng-Xin
    Ren, Chuan-Xian
    Dai, Dao-Qing
    Yan, Hong
    PATTERN RECOGNITION, 2023, 143
  • [8] Unsupervised Domain Adaptation via Deep Conditional Adaptation Network
    Ge, Pengfei
    Ren, Chuan-Xian
    Xu, Xiao-Lin
    Yan, Hong
    PATTERN RECOGNITION, 2023, 134
  • [9] Unsupervised Domain Adaptation via Domain-Adaptive Diffusion
    Peng, Duo
    Ke, Qiuhong
    Ambikapathi, ArulMurugan
    Yazici, Yasin
    Lei, Yinjie
    Liu, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4245 - 4260
  • [10] Prior Knowledge Guided Unsupervised Domain Adaptation
    Sun, Tao
    Lu, Cheng
    Ling, Haibin
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 639 - 655