Spin-Orbit Coupled Trapped Exciton-Polariton Condensates in Perovskite Microcavity

被引:0
|
作者
Shang, Qiuyu [1 ,2 ]
Deng, Xinyi [1 ]
Song, Jiepeng [1 ]
Liang, Yin [1 ]
Lu, Heng [1 ]
Gong, Yiyang [3 ]
Chen, Shulin [4 ,5 ]
Gao, Peng [4 ]
Zhan, Xiaowei [1 ]
Liu, Xinfeng [3 ]
Zhang, Qing [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[2] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[5] Hunan Univ, Changsha Semicond Technol & Applicat Innovat Res, Coll Semicond, Coll Integrated Circuits, Changsha 410082, Peoples R China
来源
基金
北京市自然科学基金;
关键词
perovskite microcavity; trapped polaritons; birefringence; polariton interactions; polariton lasing;
D O I
10.1002/adom.202401839
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lead halide perovskites exhibit superior properties compared to classical III-V semiconductor quantum wells for room-temperature polaritonic applications, particularly owing to the significant crystalline anisotropy. This anisotropy results in a sizeable split in condensate energy, which can profoundly influence polariton interactions and spin relaxation pathways. Besides, trapped exciton-polariton (TEP) exhibits a quantized energy landscape, which is essential for modulating polaritonic logical circuits. Herein, spin-orbit coupled TEP lasing is demonstrated in birefringent perovskite. Cascade condensate processes between orthogonally polarized polariton branches happen considering the dominance of reservoir exciton-polariton or polariton-polariton scattering within each stage. Such condensation adequately is verified via the input-output "S" curve, the narrowed linewidth, the energy blueshift, and the real space spatial coherence of the orthogonally polarized modes. This trapped anisotropic condensate holds great promise for room-temperature polaritonic and spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Parity bifurcations in trapped multistable phase locked exciton-polariton condensates
    Tan, E. Z.
    Sigurdsson, H.
    Liew, T. C. H.
    PHYSICAL REVIEW B, 2018, 97 (07)
  • [22] Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates
    Wouters, Michiel
    PHYSICAL REVIEW B, 2008, 77 (12):
  • [23] Rotation of exciton-polariton condensates with TE-TM splitting in a microcavity ring
    Zhang, Chuanyi
    Jin, Guojun
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [24] Incoherent excitation and switching of spin states in exciton-polariton condensates
    Li, G.
    Liew, T. C. H.
    Egorov, O. A.
    Ostrovskaya, E. A.
    PHYSICAL REVIEW B, 2015, 92 (06):
  • [25] Spontaneous formation of spin lattices in semimagnetic exciton-polariton condensates
    Mietki, Pawel
    Matuszewski, Michal
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [26] Temperature Effect on the Dispersion Relation of Nonequilibrium Exciton-Polariton Condensates in a CuBr Microcavity
    Nakayama, Masaaki
    Tamura, Kazuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (05)
  • [27] Exciton-polariton ladder in a semiconductor microcavity
    Cao, H
    Pau, S
    Yamamoto, Y
    Bjork, G
    PHYSICAL REVIEW B, 1996, 54 (11): : 8083 - 8086
  • [28] Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity
    Xiong, Zhenyu
    Wu, Hao
    Cai, Yuanwen
    Zhai, Xiaokun
    Liu, Tong
    Li, Baili
    Song, Tieling
    Guo, Longfei
    Liu, Zhengliang
    Dong, Yifan
    Liu, Peicheng
    Ren, Yuan
    NANO LETTERS, 2024, 24 (16) : 4959 - 4964
  • [29] The exciton-polariton microcavity as an optical transistor
    Steger, Mark
    Snoke, David
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VII, 2014, 8997
  • [30] Reservoir optics with exciton-polariton condensates
    Wang, Y.
    Sigurdsson, H.
    Topfer, J. D.
    Lagoudakis, P. G.
    PHYSICAL REVIEW B, 2021, 104 (23)