Spin-Orbit Coupled Trapped Exciton-Polariton Condensates in Perovskite Microcavity

被引:0
|
作者
Shang, Qiuyu [1 ,2 ]
Deng, Xinyi [1 ]
Song, Jiepeng [1 ]
Liang, Yin [1 ]
Lu, Heng [1 ]
Gong, Yiyang [3 ]
Chen, Shulin [4 ,5 ]
Gao, Peng [4 ]
Zhan, Xiaowei [1 ]
Liu, Xinfeng [3 ]
Zhang, Qing [1 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[2] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[5] Hunan Univ, Changsha Semicond Technol & Applicat Innovat Res, Coll Semicond, Coll Integrated Circuits, Changsha 410082, Peoples R China
来源
基金
北京市自然科学基金;
关键词
perovskite microcavity; trapped polaritons; birefringence; polariton interactions; polariton lasing;
D O I
10.1002/adom.202401839
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lead halide perovskites exhibit superior properties compared to classical III-V semiconductor quantum wells for room-temperature polaritonic applications, particularly owing to the significant crystalline anisotropy. This anisotropy results in a sizeable split in condensate energy, which can profoundly influence polariton interactions and spin relaxation pathways. Besides, trapped exciton-polariton (TEP) exhibits a quantized energy landscape, which is essential for modulating polaritonic logical circuits. Herein, spin-orbit coupled TEP lasing is demonstrated in birefringent perovskite. Cascade condensate processes between orthogonally polarized polariton branches happen considering the dominance of reservoir exciton-polariton or polariton-polariton scattering within each stage. Such condensation adequately is verified via the input-output "S" curve, the narrowed linewidth, the energy blueshift, and the real space spatial coherence of the orthogonally polarized modes. This trapped anisotropic condensate holds great promise for room-temperature polaritonic and spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dissipative spin-orbit coupled vortex rings in vector exciton-polariton condensates
    Tabi, C. B.
    Madimabe, E. B.
    Megne, L. Tiam
    Wamba, E.
    Kofane, T. C.
    PHYSICAL REVIEW B, 2025, 111 (10)
  • [2] Modulational instability in vector exciton-polariton condensates with photonic spin-orbit coupling
    Madimabe, Edmond B.
    Tabi, Conrad B.
    Tiofack, Camus G. Latchio
    Kofane, Timoleon C.
    PHYSICAL REVIEW B, 2023, 107 (18)
  • [3] Trapped Exciton-Polariton Condensate by Spatial Confinement in a Perovskite Microcavity
    Zhang, Shuai
    Chen, Jie
    Shi, Jia
    Fu, Lei
    Du, Wenna
    Sui, Xinyu
    Mi, Yang
    Jia, Zhili
    Liu, Fengjing
    Shi, Jianwei
    Wu, Xianxin
    Tang, Ning
    Zhang, Qing
    Liu, Xinfeng
    ACS PHOTONICS, 2020, 7 (02) : 327 - 337
  • [4] Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites
    Spencer, Michael S.
    Fu, Yongping
    Schlaus, Andrew P.
    Hwang, Doyk
    Dai, Yanan
    Smith, Matthew D.
    Gamelin, Daniel R.
    Zhu, X-Y
    SCIENCE ADVANCES, 2021, 7 (49)
  • [5] Phase diagram of microcavity exciton-polariton condensates
    Dinh-Hoi Bui
    Van-Nham Phan
    EPL, 2016, 116 (05)
  • [6] Screening nearest-neighbor interactions in networks of exciton-polariton condensates through spin-orbit coupling
    Aristov, Denis
    Sigurdsson, Helgi
    Lagoudakis, G. Pavlos
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [7] Microcavity Exciton-Polariton Quantum Spin Fluids
    Yang, HeeBong
    Kim, Na Young
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (07)
  • [8] Microcavity exciton-polariton
    Cao, H
    COHERENT CONTROL IN ATOMS, MOLECULES, AND SEMICONDUCTORS, 1999, : 157 - 168
  • [9] Exciton-polariton condensates
    Byrnes, Tim
    Kim, Na Young
    Yamamoto, Yoshihisa
    NATURE PHYSICS, 2014, 10 (11) : 803 - 813
  • [10] BCS-BEC crossovers of microcavity exciton-polariton condensates
    Quoc-Huy Ninh
    Van-Nham Phan
    PHYSICA B-CONDENSED MATTER, 2019, 573 : 72 - 76