Techno-economic and environmental assessment of renewable hydrogen import routes from overseas in 2030

被引:0
|
作者
Scheffler, Florian [1 ]
Imdahl, Christoph [1 ]
Zellmer, Sabrina [1 ,2 ]
Herrmann, Christoph [1 ,3 ]
机构
[1] Fraunhofer Inst Surface Engn & Thin Films IST, Riedenkamp 2, D-38108 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 4, D-38104 Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Machine Tools & Prod Technol, Langer Kamp 19B, D-38106 Braunschweig, Germany
关键词
Hydrogen carrier; Hydrogen import; Ship transport; Economic analysis; Emissions intensity; NATURAL-GAS; ENERGY; CARRIERS; STORAGE; TRANSPORT; AMMONIA; VECTOR; COST;
D O I
10.1016/j.apenergy.2024.125073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Converting renewable electricity via water electrolysis into green hydrogen and hydrogen-based products will shape a global trade in power-to-x (PtX) products. The European Union's renewable hydrogen import target of 10 million tonnes by 2030 reflects the urgent need for PtX imports by sea to early high-demand countries like Germany. This study evaluates the cost efficiency and greenhouse gas (GHG) emissions of four hydrogen carrier ship import options considering a reconversion to H2 at the import terminal for a final delivery to offtakers via a H2 pipeline network in 2030. This includes ammonia, a liquid organic hydrogen carrier (LOHC) system based on benzyltoluene (BT) and a novel CO2/e-methane and CO2/e-methanol cycle, where CO2 is captured at the reconversion plant and then shipped back to the PtX production site in a nearly closed carbon loop. The GHG emission accounting includes well-to-wake emissions of the marine fuels and direct emissions of the carbon capture plant. Two GW-scale case studies reveal the impact of a short and long-distance route from Tunisia and Australia to Germany, whereas the specific PtX carriers are either fuelled by its PtX cargo as a renewable marine fuel or by conventional heavy fuel oil (HFO). Ammonia outperforms the other PtX routes, as the total hydrogen supply cost range between 5.07 and 7.69 for Australia (low: NH3 HFO, high: LOHC HFO) and 4.78-6.21 <euro> per kg H2 for Tunisia (low: NH3 HFO, high: CH4 HFO), respectively. The ammonia routes achieve thereby GHG intensities of 31 % and 86 % below the EU threshold of 3.4 kg CO2(e) per kg H2 for renewable hydrogen. LOHC though, unless switching to low-emission fuels, and the CO2/e-methanol cycle exceed the GHG threshold at shipping distances of 12,300 and 16,600 km. The hydrogen supply efficiencies vary between 57.9 and 78.8 % LHV (low: CH4 PtX-fuelled, high: NH3 HFO) with a PtX marine fuel consumption of up to 15 % LHV for the Australian methanol route, whereas high uncertainties remain for the ammonia and methanol reconversion plant effi- ciencies. The CO2 cyle enables a cost-efficient CO2 supply easing the near-term shortage of climate-neutral CO2 sources at the cost of high GHG emissions for long-distance routes.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Techno-Economic Assessment of Renewable Diesel and Gasoline Production from Aspen Hardwood
    Madhumita Patel
    Adetoyese Olajire Oyedun
    Amit Kumar
    Rajender Gupta
    Waste and Biomass Valorization, 2019, 10 : 2745 - 2760
  • [22] A Techno-Economic Assessment of Renewable Diesel and Gasoline Production from Aspen Hardwood
    Patel, Madhumita
    Oyedun, Adetoyese Olajire
    Kumar, Amit
    Gupta, Rajender
    WASTE AND BIOMASS VALORIZATION, 2019, 10 (10) : 2745 - 2760
  • [23] Normalized techno-economic index for renewable energy system assessment
    Guo, Mengning
    Liu, Gang
    Liao, Shengming
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 133
  • [24] General indicator for techno-economic assessment of renewable energy resources
    Liu, Gang
    Li, Mengsi
    Zhou, Bingjie
    Chen, Yingying
    Liao, Shengming
    ENERGY CONVERSION AND MANAGEMENT, 2018, 156 : 416 - 426
  • [25] International supply chains for a hydrogen ramp-up: Techno-economic assessment of hydrogen transport routes to Germany
    Wolf, Nicolas
    Kuehn, Lucas
    Hoeck, Michael
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 23
  • [26] Techno-economic Assessment of the Fermentative Hydrogen Production from Sugar Beet
    Urbaniec, Krzysztof
    Grabarczyk, Robert
    PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 1081 - 1086
  • [27] Analysis and techno-economic assessment of renewable hydrogen production and blending into natural gas for better sustainability
    Sorgulu, Fatih
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (46) : 19977 - 19988
  • [28] Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries
    Klein, Bruno Colling
    Chagas, Mateus Ferreira
    Junqueira, Tassia Lopes
    Alves Ferreira Rezende, Mylene Cristina
    Cardoso, Terezinha de Fatima
    Cavalett, Otavio
    Bonomi, Antonio
    APPLIED ENERGY, 2018, 209 : 290 - 305
  • [29] Techno-economic assessment and environmental impacts of desalination technologies
    Mezher, Toufic
    Fath, Hassan
    Abbas, Zeina
    Khaled, Arslan
    DESALINATION, 2011, 266 (1-3) : 263 - 273
  • [30] Carbon-negative hydrogen production (HyBECCS) : An exemplary techno-economic and environmental assessment
    Full, Johannes
    Geller, Marcel
    Ziehn, Sonja
    Schliess, Tobias
    Miehe, Robert
    Sauer, Alexander
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 594 - 609