Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data

被引:0
|
作者
Dasilva, Alan [1 ]
Saulo, Helton [2 ,3 ]
Vila, Roberto [2 ,4 ]
Pal, Suvra [3 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[2] Univ Brasilia, Dept Stat, Brasilia, Brazil
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 01期
关键词
Scale-mixture Birnbaum-Saunders distribution; EM algorithm; Hypothesis tests; Monte Carlo simulation; Quantile regression; INFORMATION MATRIX; EM ALGORITHM;
D O I
10.1007/s40314-024-03037-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modeling of personal accident insurance data has been a topic of high relevance in the insurance literature. This type of data often exhibits positive skewness and heavy tails. In this work, we propose a new quantile regression model based on the scale-mixture Birnbaum-Saunders distribution for modeling personal accident insurance data. The maximum likelihood estimates of the model parameters are obtained via the EM algorithm. Two Monte Carlo simulation studies are performed using the R software. The first study aims to analyze the performances of the EM algorithm to obtain the maximum likelihood estimates, and the randomized quantile and generalized Cox-Snell residuals. In the second simulation study, the size and power of the Wald, likelihood ratio, score and gradient tests are evaluated. The two simulation studies are conducted considering different quantiles of interest and sample sizes. Finally, a real insurance data set is analyzed to illustrate the proposed approach.
引用
收藏
页数:48
相关论文
共 50 条
  • [21] Nonlinear regression models based on the normal mean-variance mixture of Birnbaum-Saunders distribution
    Mehrdad Naderi
    Alireza Arabpour
    Tsung-I Lin
    Ahad Jamalizadeh
    Journal of the Korean Statistical Society, 2017, 46 : 476 - 485
  • [22] Estimation of parameters for a Birnbaum-Saunders regression model with censored data
    Desmond, Anthony F.
    Rodriguez-Yam, Gabriel A.
    Lu, Xuewen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (11) : 983 - 997
  • [23] Extreme value Birnbaum–Saunders regression models applied to environmental data
    Víctor Leiva
    Marta Ferreira
    M. Ivette Gomes
    Camilo Lillo
    Stochastic Environmental Research and Risk Assessment, 2016, 30 : 1045 - 1058
  • [24] On some mixture models based on the Birnbaum-Saunders distribution and associated inference
    Balakrishnan, N.
    Gupta, Ramesh C.
    Kundu, Debasis
    Leiva, Victor
    Sanhueza, Antonio
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (07) : 2175 - 2190
  • [25] A study of exponential-type tails applied to Birnbaum-Saunders models
    Ferreira, Marta
    CHILEAN JOURNAL OF STATISTICS, 2013, 4 (01): : 87 - 97
  • [26] A New Quantile Regression for Modeling Bounded Data under a Unit Birnbaum-Saunders Distribution with Applications in Medicine and Politics
    Mazucheli, Josmar
    Leiva, Victor
    Alves, Bruna
    Menezes, Andre F. B.
    SYMMETRY-BASEL, 2021, 13 (04):
  • [27] Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis
    Villegas, Cristian
    Paula, Gilberto A.
    Leiva, Victor
    IEEE TRANSACTIONS ON RELIABILITY, 2011, 60 (04) : 748 - 758
  • [28] Birnbaum-Saunders autoregressive conditional duration models applied to high-frequency financial data
    Saulo, Helton
    Leao, Jeremias
    Leiva, Victor
    Aykroyd, Robert G.
    STATISTICAL PAPERS, 2019, 60 (05) : 1605 - 1629
  • [29] Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data
    Garcia-Papani, Fabiana
    Uribe-Opazo, Miguel Angel
    Leiva, Victor
    Aykroyd, Robert G.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (01) : 105 - 124
  • [30] Multivariate Restricted Skew-Normal Scale Mixture of Birnbaum-Saunders Distribution
    Samary, H.
    Khodadadi, Z.
    Jafarpour, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 123 - 145