Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data

被引:0
|
作者
Dasilva, Alan [1 ]
Saulo, Helton [2 ,3 ]
Vila, Roberto [2 ,4 ]
Pal, Suvra [3 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[2] Univ Brasilia, Dept Stat, Brasilia, Brazil
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 01期
关键词
Scale-mixture Birnbaum-Saunders distribution; EM algorithm; Hypothesis tests; Monte Carlo simulation; Quantile regression; INFORMATION MATRIX; EM ALGORITHM;
D O I
10.1007/s40314-024-03037-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modeling of personal accident insurance data has been a topic of high relevance in the insurance literature. This type of data often exhibits positive skewness and heavy tails. In this work, we propose a new quantile regression model based on the scale-mixture Birnbaum-Saunders distribution for modeling personal accident insurance data. The maximum likelihood estimates of the model parameters are obtained via the EM algorithm. Two Monte Carlo simulation studies are performed using the R software. The first study aims to analyze the performances of the EM algorithm to obtain the maximum likelihood estimates, and the randomized quantile and generalized Cox-Snell residuals. In the second simulation study, the size and power of the Wald, likelihood ratio, score and gradient tests are evaluated. The two simulation studies are conducted considering different quantiles of interest and sample sizes. Finally, a real insurance data set is analyzed to illustrate the proposed approach.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] On scale-mixture Birnbaum-Saunders distributions
    Patriota, Alexandre G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2221 - 2226
  • [2] Birnbaum-Saunders Quantile Regression Models with Application to Spatial Data
    Sanchez, Luis
    Leiva, Victor
    Galea, Manuel
    Saulo, Helton
    MATHEMATICS, 2020, 8 (06)
  • [3] Extreme value Birnbaum-Saunders regression models applied to environmental data
    Leiva, Victor
    Ferreira, Marta
    Gomes, M. Ivette
    Lillo, Camilo
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (03) : 1045 - 1058
  • [4] Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals and the EM-algorithm
    Balakrishnan, N.
    Leiva, Victor
    Sanhueza, Antonio
    Vilca, Filidor
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2009, 33 (02) : 171 - 191
  • [5] Birnbaum-Saunders functional regression models for spatial data
    Martinez, Sergio
    Giraldo, Ramon
    Leiva, Victor
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (10) : 1765 - 1780
  • [6] Birnbaum-Saunders nonlinear regression models
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4441 - 4452
  • [7] Birnbaum-Saunders quantile regression and its diagnostics with application to economic data
    Sanchez, Luis
    Leiva, Victor
    Galea, Manuel
    Saulo, Helton
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2021, 37 (01) : 53 - 73
  • [8] Birnbaum-Saunders frailty regression models for clustered survival data
    Gallardo, Diego I.
    Bourguignon, Marcelo
    Romeo, Jose S.
    STATISTICS AND COMPUTING, 2024, 34 (04)
  • [9] Birnbaum-Saunders spatial regression models: Diagnostics and application to chemical data
    Garcia-Papani, Fabiana
    Leiva, Victor
    Uribe-Opazo, Miguel A.
    Aykroyd, Robert G.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 177 : 114 - 128
  • [10] Birnbaum-Saunders frailty regression models: Diagnostics and application to medical data
    Leao, Jeremias
    Leiva, Victor
    Saulo, Helton
    Tomazella, Vera
    BIOMETRICAL JOURNAL, 2017, 59 (02) : 291 - 314