Hierarchical graph contrastive learning framework based on quantum neural networks for sentiment analysis

被引:0
|
作者
Jia, Keliang [1 ]
Meng, Fanxu [1 ]
Liang, Jing [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Er Huan East Rd, Jinan, Shandong, Peoples R China
关键词
Contrastive learning; Sentiment analysis; Multi-modal; Quantum neural network;
D O I
10.1016/j.ins.2024.121543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing multi-modal sentiment analysis (MSA) methods typically achieve interaction by connecting different layers or designing special structures, but rarely consider the synergistic effects among data. Moreover, most sentiment analysis research tends to focus solely on single sentiment polarity analysis, without considering the intensity and directional attributes of emotions. Addressing these issues, we propose a framework called Hierarchical Graph Contrastive Learning based on Quantum Neural Network (HGCL-QNN) to remedy these shortcomings. Specifically, a graph structure is established within and between modalities. In the quantum fuzzy neural network module, fuzzy quantum encoding is implemented by using complex-valued, then quantum superposition and entanglement are utilized to consider the intensity and directional attributes of emotions while analyzing emotional polarity. In the quantum multi-modal fusion neural network module, methods such as amplitude encoding and quantum entanglement are employed to further integrate information from different modalities, thereby enhancing the model's power to express emotional information. To enhance the model's understanding of fine-grained and global features, and to better align and integrate features from different modalities, hierarchical graph contrastive learning is employed on different levels. The experimental results demonstrate that HGCL-QNN outperforms the existing baseline methods on MOSI and MOSEI datasets, achieving significant efficacy improvements.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Multi-channel Graph Neural Networks with Contrastive Learning for Social Recommendation
    Liu, Ping
    Yang, Jian
    2023 IEEE INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2023, : 32 - 39
  • [22] Contrastive learning of protein representations with graph neural networks for structural and functional annotations
    Luo, Jiaqi
    Luo, Yunan
    BIOCOMPUTING 2023, PSB 2023, 2023, : 109 - 120
  • [23] CSGNN: Improving Graph Neural Networks with Contrastive Semi-supervised Learning
    Song, Yumeng
    Gu, Yu
    Li, Xiaohua
    Li, Chuanwen
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I, 2022, : 731 - 738
  • [24] Molecular representation contrastive learning via transformer embedding to graph neural networks
    Liu, Yunwu
    Zhang, Ruisheng
    Li, Tongfeng
    Jiang, Jing
    Ma, Jun
    Yuan, Yongna
    Wang, Ping
    APPLIED SOFT COMPUTING, 2024, 164
  • [25] Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
    Huang, Zhenhuan
    Wu, Guansheng
    Qian, Xiang
    Zhang, Baochang
    2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2022, : 668 - 673
  • [26] HCL: Improving Graph Representation with Hierarchical Contrastive Learning
    Wang, Jun
    Li, Weixun
    Hou, Changyu
    Tang, Xin
    Qiao, Yixuan
    Fang, Rui
    Li, Pengyong
    Gao, Peng
    Xie, Guotong
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 108 - 124
  • [27] An Interpretable Brain Graph Contrastive Learning Framework for Brain Disorder Analysis
    Luo, Xuexiong
    Dong, Guangwei
    Wu, Jia
    Beheshti, Amin
    Yang, Jian
    Xue, Shan
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 1074 - 1077
  • [28] A Laplacian-based quantum graph neural networks for quantum semi-supervised learning
    Gholipour, Hamed
    Bozorgnia, Farid
    Hambarde, Kailash
    Mohammadigheymasi, Hamzeh
    Mancilla, Javier
    Sequeira, Andre
    Neves, Joao
    Proenca, Hugo
    Challenger, Moharram
    QUANTUM INFORMATION PROCESSING, 2025, 24 (04)
  • [29] Entropy Neural Estimation for Graph Contrastive Learning
    Ma, Yixuan
    Zhang, Xiaolin
    Zhang, Peng
    Zhan, Kun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 435 - 443
  • [30] Neural Graph Similarity Computation with Contrastive Learning
    Hu, Shengze
    Zeng, Weixin
    Zhang, Pengfei
    Tang, Jiuyang
    APPLIED SCIENCES-BASEL, 2022, 12 (15):