Hierarchical graph contrastive learning framework based on quantum neural networks for sentiment analysis

被引:0
|
作者
Jia, Keliang [1 ]
Meng, Fanxu [1 ]
Liang, Jing [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Management Sci & Engn, 7366 Er Huan East Rd, Jinan, Shandong, Peoples R China
关键词
Contrastive learning; Sentiment analysis; Multi-modal; Quantum neural network;
D O I
10.1016/j.ins.2024.121543
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing multi-modal sentiment analysis (MSA) methods typically achieve interaction by connecting different layers or designing special structures, but rarely consider the synergistic effects among data. Moreover, most sentiment analysis research tends to focus solely on single sentiment polarity analysis, without considering the intensity and directional attributes of emotions. Addressing these issues, we propose a framework called Hierarchical Graph Contrastive Learning based on Quantum Neural Network (HGCL-QNN) to remedy these shortcomings. Specifically, a graph structure is established within and between modalities. In the quantum fuzzy neural network module, fuzzy quantum encoding is implemented by using complex-valued, then quantum superposition and entanglement are utilized to consider the intensity and directional attributes of emotions while analyzing emotional polarity. In the quantum multi-modal fusion neural network module, methods such as amplitude encoding and quantum entanglement are employed to further integrate information from different modalities, thereby enhancing the model's power to express emotional information. To enhance the model's understanding of fine-grained and global features, and to better align and integrate features from different modalities, hierarchical graph contrastive learning is employed on different levels. The experimental results demonstrate that HGCL-QNN outperforms the existing baseline methods on MOSI and MOSEI datasets, achieving significant efficacy improvements.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hierarchical graph contrastive learning of local and global presentation for multimodal sentiment analysis
    Du, Jun
    Jin, Jianhang
    Zhuang, Jian
    Zhang, Cheng
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [2] A Lightweight Method for Graph Neural Networks Based on Knowledge Distillation and Graph Contrastive Learning
    Wang, Yong
    Yang, Shuqun
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [3] Hierarchical Graph Contrastive Learning
    Yan, Hao
    Wang, Senzhang
    Yin, Jun
    Li, Chaozhuo
    Zhu, Junxing
    Wang, Jianxin
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 700 - 715
  • [4] Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network
    Liu N.
    Wang X.
    Han H.
    Shi C.
    IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10) : 10884 - 10896
  • [5] Globally Enhanced Heterogeneous Temporal Graph Neural Networks Based on Contrastive Learning
    Jiao P.
    Liu H.
    Lü L.
    Gao M.
    Zhang J.
    Liu D.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (08): : 1808 - 1821
  • [6] Molecular contrastive learning of representations via graph neural networks
    Yuyang Wang
    Jianren Wang
    Zhonglin Cao
    Amir Barati Farimani
    Nature Machine Intelligence, 2022, 4 : 279 - 287
  • [7] Molecular contrastive learning of representations via graph neural networks
    Wang, Yuyang
    Wang, Jianren
    Cao, Zhonglin
    Farimani, Amir Barati
    NATURE MACHINE INTELLIGENCE, 2022, 4 (03) : 279 - 287
  • [8] A Contrastive Learning Framework with Tree-LSTMs for Aspect-Based Sentiment Analysis
    Zhang, Qichen
    Wang, Shuai
    Li, Jingmei
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 8869 - 8886
  • [9] A Contrastive Learning Framework with Tree-LSTMs for Aspect-Based Sentiment Analysis
    Qichen Zhang
    Shuai Wang
    Jingmei Li
    Neural Processing Letters, 2023, 55 : 8869 - 8886
  • [10] Aspect sentiment analysis with heterogeneous graph neural networks
    Lu, Guangquan
    Li, Jiecheng
    Wei, Jian
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)