The latent maximum entropy principle

被引:0
|
作者
Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum likelihood estimation
引用
收藏
相关论文
共 50 条
  • [41] The maximum entropy principle for compositional data
    Weistuch, Corey
    Zhu, Jiening
    Deasy, Joseph O.
    Tannenbaum, Allen R.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [42] Maximum Entropy Principle in Image Restoration
    Petrovici, Mihai-Alexandra
    Damian, Cristian
    Coltuc, Daniela
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2018, 18 (02) : 77 - 84
  • [43] The maximum entropy principle in decision theory
    Prokaev, A. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2024, 20 (02): : 154 - 169
  • [44] IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE - COMMENT
    DUNNINGDAVIES, J
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (01) : 88 - 89
  • [45] GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    THOMAS, MU
    OPERATIONS RESEARCH, 1979, 27 (06) : 1188 - 1196
  • [46] The maximum entropy principle: A critical discussion
    Caldeira, Ken
    CLIMATIC CHANGE, 2007, 85 (3-4) : 267 - 269
  • [47] On estimating distributions with the maximum entropy principle
    Zhigunov, V.P.
    Kostkina, T.B.
    Spiridonov, A.A.
    Nuclear instruments and methods in physics research, 1988, 273 (01): : 362 - 370
  • [48] The maximum entropy principle for compositional data
    Corey Weistuch
    Jiening Zhu
    Joseph O. Deasy
    Allen R. Tannenbaum
    BMC Bioinformatics, 23
  • [49] Maximum Entropy principle and the nature of fractals
    Universitat de Barcelona, Barcelona, Spain
    Phys A Stat Theor Phys, 3-4 (291-302):
  • [50] Maximum entropy principle and the logistic model
    Leblanc, R
    Shapiro, S
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1999, 7 (01) : 51 - 62