HYPERSPECTRAL IMAGE CLASSIFICATION USING UNCERTAINTY AND DIVERSITY BASED ACTIVE LEARNING

被引:0
|
作者
Patel U. [1 ]
Dave H. [1 ]
Patel V. [2 ]
机构
[1] Nirma University, Ahmedabad
[2] Vishwakarma Government Engineering College, GTU
来源
Scalable Computing | 2021年 / 22卷 / 03期
关键词
Active Learning (AL); Convolutional Neural Network (CNN); Deep Learning (DL); Diversity; Hyperspectral Image (HSI) Classification; Uncertainty;
D O I
10.12694/SCPE.V22I3.1865
中图分类号
学科分类号
摘要
There has been extensive research in the field of Hyperspectral Image Classification using deep neural networks. The deep learning based approaches requires huge amount of labelled data samples. But in the case of Hyperspectral Image, there are less number of labelled data samples. Therefore, we can adopt Active Learning combined with deep learning based approaches to be able to extract most informative data samples. By using this technique, we can train the classifier to achieve better classification accuracies with less number of labelled data samples. There is considerable amount of research carried out for selecting diverse data samples from the pool of unlabeled data samples. We present a novel diversity-based Active Learning approach utilizing the information of clustered data distribution. We incorporate diversity criteria with Active Learning selection criteria and combine it with Convolutional Neural Network for feature extraction and classification. This approach helps us in obtaining most informative and diverse data samples. We have compared our proposed approach with three other sampling methods in terms of classification accuracies, Cohen Kappa score, which shows that our approach gives better results with comparison to other sampling methods. © 2021. SCPE.
引用
收藏
页码:283 / 293
页数:10
相关论文
共 50 条
  • [31] HYPERSPECTRAL IMAGE CLASSIFICATION WITH SPARSE REPRESENTATION CLASSIFIER AND ACTIVE LEARNING
    Huo, Lian-Zhi
    Zhao, Li-Jun
    Tang, Ping
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [32] Active Learning With Gaussian Process Classifier for Hyperspectral Image Classification
    Sun, Shujin
    Zhong, Ping
    Xiao, Huaitie
    Wang, Runsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04): : 1746 - 1760
  • [33] Active Learning Methods for Classification of Hyperspectral Remote Sensing Image
    Ding, Sheng
    Li, Bo
    Fu, Xiaowei
    INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 484 - 491
  • [34] Hyperspectral Image Classification With Convolutional Neural Network and Active Learning
    Cao, Xiangyong
    Yao, Jing
    Xu, Zongben
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4604 - 4616
  • [35] Feature-Driven Active Learning for Hyperspectral Image Classification
    Liu, Chenying
    He, Lin
    Li, Zhetao
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 341 - 354
  • [36] TRAINING CAPSNETS VIA ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Javier
    Plaza, Antonio
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 40 - 43
  • [37] CRITICAL CLASS ORIENTED ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Di, Wei
    Crawford, Melba M.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3899 - 3902
  • [38] ACCESSIBILITY-FREE ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Liu, Chenying
    Li, Jun
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Antonio
    Shi, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 409 - 412
  • [39] Active Learning Improved by Neighborhoods and Superpixels for Hyperspectral Image Classification
    Xue, Zhaohui
    Zhou, Shaoguang
    Zhao, Pengfei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (03) : 469 - 473
  • [40] Iterative weighted active transfer learning hyperspectral image classification
    Cui, Ying
    Wang, Lingxiu
    Su, Jingjing
    Gao, Shan
    Wang, Liguo
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)