Enabling multi-step forecasting with structured state space learning module

被引:0
|
作者
Wang, Shaoqi [1 ]
Yang, Chunjie [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol ICT, Hangzhou 310027, Peoples R China
关键词
State space; Long-term dependencies; Soft sensor; Multi-step forecasting; Deep learning; Neural networks; TERM WIND; PREDICTION;
D O I
10.1016/j.ins.2024.121669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven soft sensor incorporated with the model predictive control (MPC) algorithms facilitating product quality and cost control is of imperative importance in industrial processes. However, the widely used one-step forecasting method can not incorporate with MPC and therefore restricts the practical usage of soft sensor. Multi-step forecasting introduces long-term dependencies problems yet has not been effectively resolved within traditional model structure. To address this problem, this paper proposes the deep learning network architecture named Extended State Space Learning Module (ESSLM). ESSLM extends the nonlinear mapping architecture of deep learning based on state space and retains state transfer matrices to characterize the dynamics of the system. ESSLM distinguishes itself from explicit network architectures such as gated RNNs by addressing the long-term dependencies problems through an implicit initialization method, and the MLP and RNN algorithms can be regarded as the manifestation of ESSLM in special cases. ESSLM characterizes the latent space as the coefficients of the orthogonal basis functions so that the input data can be encoded into a high-dimensional feature space with minimal information loss which efficiently achieves multi-step forecasting and give greater utility and practical significance.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Learning to prove: Using structured templates for multi-step calculations as an introduction to local deduction
    Gardiner T.
    ZDM, 2004, 36 (2) : 67 - 76
  • [22] Explainable machine learning model for multi-step forecasting of reservoir inflow with uncertainty quantification
    Fan, Ming
    Liu, Siyan
    Lu, Dan
    Gangrade, Sudershan
    Kao, Shih-Chieh
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 170
  • [23] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Georgia Papacharalampous
    Hristos Tyralis
    Demetris Koutsoyiannis
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 481 - 514
  • [24] Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning
    Galarza-Chavez, Angel A.
    Martinez-Rodriguez, Jose L.
    Dominguez-Cruz, Rene Fernando
    Lopez-Garza, Esmeralda
    Rios-Alvarado, Ana B.
    ENERGY REPORTS, 2025, 13 : 1 - 15
  • [25] Multi-step Time Series Forecasting of Electric Load Using Machine Learning Models
    Masum, Shamsul
    Liu, Ying
    Chiverton, John
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 148 - 159
  • [26] Multi-step learning rule for recurrent neural models:: An application to time series forecasting
    Galván, IM
    Isasi, P
    NEURAL PROCESSING LETTERS, 2001, 13 (02) : 115 - 133
  • [27] Multi-step ahead Bitcoin Price Forecasting Based on VMD and Ensemble Learning Methods
    da Silva, Ramon Gomes
    Ribeiro, Matheus Henrique Dal Molin
    Fraccanabbia, Naylene
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [28] A Multi-Step Reinforcement Learning Algorithm
    Zhang, Zhicong
    Hu, Kaishun
    Huang, Huiyu
    Li, Shuai
    Zhao, Shaoyong
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 3611 - 3615
  • [29] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Papacharalampous, Georgia
    Tyralis, Hristos
    Koutsoyiannis, Demetris
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (02) : 481 - 514
  • [30] Multi-step Ahead Urban Water Demand Forecasting Using Deep Learning Models
    Sahoo B.B.
    Panigrahi B.
    Nanda T.
    Tiwari M.K.
    Sankalp S.
    SN Computer Science, 4 (6)