A novel metric for quantifying solar irradiance stability: Mapping solar irradiance variability to photovoltaic power generation

被引:0
|
作者
Tian, Qun [1 ]
Li, Jinxiao [2 ]
Xie, Zhiang [3 ]
Li, Puxi [4 ]
Wang, Ya [5 ]
Chen, Dongwei [6 ]
Zheng, Yue [7 ]
机构
[1] GBA Acad Meteorol Res, Guangzhou Inst Trop & Marine Meteorol, Guangdong Prov Key Lab Reg Numer Weather Predict, China Meteorol Adm, Guangzhou 510641, Peoples R China
[2] Shanghai Invest Design & Res Inst Co Ltd, Shanghai 200434, Peoples R China
[3] Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
[4] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, China Meteorol Adm, Beijing 100081, Peoples R China
[5] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geoph, Beijing 100029, Peoples R China
[6] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
[7] ClusterTech Ltd, Hong Kong 999077, Peoples R China
基金
中国博士后科学基金; 上海市科技启明星计划; 中国国家自然科学基金;
关键词
Photovoltaic; Solar irradiance; Solar instability index; Wasserstein distance; TEMPORAL VARIABILITY; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.renene.2024.122035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The daily stability of solar irradiance significantly influences photovoltaic (PV) power generation; however, existing metrics for assessing it normally fail to robustly correlate with daily PV output. To address this gap, we introduce anew metric, the solar instability index (SII), formulated by applying the Wasserstein distance to assess the deviation of intra-day solar irradiance pattern from the anticipated diurnal cycle. In our case station, SII closely correlates with atmospheric moisture and available solar energy, suggesting its strong association with synoptic weather events that lead to solar resource loss. We further scrutinize the efficacy of SII alongside two existing metrics through two case studies. The results demonstrate that SII excels in capturing low-frequency variations in solar irradiance without relying on arbitrarily assigned parameters, thereby outperforming the other two metrics in establishing a robust correlation with PV power output. As such, in scenarios involving site selection for PV power plant, SII stands as a valuable metric for assessing the potential stability of daily PV power generation.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Variability of solar irradiance and its manifestations on Earth
    Sklyarov, YA
    Dvinskikh, VA
    Brichkov, YI
    Kotuma, AI
    EARTH OBSERVATION AND REMOTE SENSING, 2001, 16 (06): : 911 - 920
  • [32] Solar corona irradiance variability and cosmic rays
    Sykora, J
    Storini, M
    JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1997, 49 : S31 - S37
  • [33] Studying solar irradiance variability with wavelet technique
    Vigouroux, A
    Pap, J
    SOLAR DRIVERS OF INTERPLANETARY AND TERRESTRIAL DISTURBANCES, 1996, 95 : 586 - 593
  • [34] Solar Irradiance Variability: Comparisons of Models and Measurements
    Coddington, O.
    Lean, J.
    Pilewskie, P.
    Snow, M.
    Richard, E.
    Kopp, G.
    Lindholm, C.
    Deland, M.
    Marchenko, S.
    Haberreiter, M.
    Baranyi, T.
    EARTH AND SPACE SCIENCE, 2019, 6 (12) : 2525 - 2555
  • [35] Magnitudes and timescales of total solar irradiance variability
    Kopp, Greg
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2016, 6
  • [36] Quantifiers for the solar irradiance variability: A new perspective
    Blaga, Robert
    Paulescu, Marius
    SOLAR ENERGY, 2018, 174 : 606 - 616
  • [37] Variability of the solar spectral irradiance and energetic particles
    Silva-Valio, Adriana
    SOLAR AND STELLAR VARIABILITY: IMPACT ON EARTH AND PLANETS, 2010, (264): : 39 - 48
  • [38] MEASUREMENTS OF SOLAR TOTAL IRRADIANCE AND ITS VARIABILITY
    WILLSON, RC
    SPACE SCIENCE REVIEWS, 1984, 38 (3-4) : 203 - 242
  • [39] Spatially resolved images and solar irradiance variability
    R. Kariyappa
    Journal of Astrophysics and Astronomy, 2008, 29 : 159 - 162
  • [40] Solar irradiance variability - comparison of models and observations
    Fox, PA
    Fontenla, JM
    White, OR
    SOLAR VARIABILITY AND CLIMATE CHANGE, 2004, 34 (02): : 231 - 236