Selective denoising autoencoder for classification of noisy gas mixtures using 2D transition metal dichalcogenides

被引:0
|
作者
Sohn, Inkyu [1 ]
Shin, Won-Yong [2 ]
Shin, Sujong [3 ]
Yoo, Jisang [1 ]
Shin, Dain [1 ]
Kim, Minji [1 ]
Choi, Sang-Il [3 ]
Chung, Seung min [1 ]
Kim, Hyungjun [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Yonsei Univ, Sch Math & Comp Computat Sci & Engn, Seoul 03722, South Korea
[3] Dankook Univ, Dept Comp Engn, Yongin 16890, South Korea
基金
新加坡国家研究基金会;
关键词
QUALITY; TEMPERATURE; SENSOR;
D O I
10.1016/j.talanta.2024.127129
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electronic nose (E-nose) technology, which is composed of an array of chemical sensors and pattern recognition, has been widely utilized for the quantitative classification of gas mixtures. However, for the practical use of E-nose in real-industry, advanced algorithms are necessary to handle the noise in sensing data caused by various environmental variables. In order to achieve precise measurements even in real-world environments, it is necessary to denoise and classify noisy sensing data. To address these challenges, we have developed a novel deep learning approach, called selective denoising autoencoder (SDAE), which intelligently leverages both clean and noisy data gathered from real-world environments for mixed gas classification. Two-dimensional transition metal dichalcogenides (2D TMDCs) were used for the sensing channel. Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to characterize the TMDC sensing channel. Additionally, we conducted an analysis of the gas sensing properties towards NO2, NH3, and their mixtures (at ratios of 1:1, 1:2, and 2:1), and performed gas classification using our proposed SDAE model. The result achieved more than 95 % accuracy in all cases even in the noisy environment, which could be practically utilized in the industry.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 2D transition metal dichalcogenides for efficient hydrogen generation
    Bora, Priyakshi
    Kumar, Suraj
    Sinha, Dipak
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [22] Chemically Functionalized 2D Transition Metal Dichalcogenides for Sensors
    Acosta, Selene
    Quintana, Mildred
    SENSORS, 2024, 24 (06)
  • [23] Optoelectronic superlattices based on 2D transition metal dichalcogenides
    Liu, Dan-Na
    Guo, Yong
    APPLIED PHYSICS LETTERS, 2021, 118 (12)
  • [24] Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
    Mak, Kin Fai
    Shan, Jie
    NATURE PHOTONICS, 2016, 10 (04) : 216 - 226
  • [25] Reducing Atomic Defects in 2D Transition Metal Dichalcogenides
    Zhang, Yunhao
    Wang, Jingwei
    Nong, Huiyu
    He, Liqiong
    Li, Shengnan
    Wei, Qiang
    Wu, Qinke
    Liu, Bilu
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [26] Flexible electronics based on 2D transition metal dichalcogenides
    Jiang, Dongting
    Liu, Zhiyuan
    Xiao, Zhe
    Qian, Zhengfang
    Sun, Yiling
    Zeng, Zhiyuan
    Wang, Renheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 10 (01) : 89 - 121
  • [27] Air Pressure, Gas Exposure and Electron Beam Irradiation of 2D Transition Metal Dichalcogenides
    Di Bartolomeo, Antonio
    Pelella, Aniello
    Grillo, Alessandro
    Urban, Francesca
    Giubileo, Filippo
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [28] Transport studies in 2D transition metal dichalcogenides and black phosphorus
    Du, Yuchen
    Neal, Adam T.
    Zhou, Hong
    Ye, Peide D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (26)
  • [29] Recent Progress on 2D Noble-Transition-Metal Dichalcogenides
    Pi, Lejing
    Li, Liang
    Liu, Kailang
    Zhang, Qingfu
    Li, Huiqiao
    Zhai, Tianyou
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (51)
  • [30] Noninvasive Deterministic Nanostructures Lithography on 2D Transition Metal Dichalcogenides
    Ramo, Lorenzo
    Peci, Ermes
    Magnozzi, Michele
    Spotorno, Emma
    Venturino, Valentina
    Sygletou, Maria
    Giordano, Maria Caterina
    Zambito, Giorgio
    Telesio, Francesca
    Milosz, Zygmunt
    Canepa, Maurizio
    Bisio, Francesco
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (01)