Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering

被引:0
|
作者
Chan, Shareen S. L. [1 ,6 ]
Black, Jay R. [2 ,3 ]
Franks, George, V [1 ]
Heath, Daniel E. [4 ,5 ]
机构
[1] Univ Melbourne, Chem Engn, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Trace Anal Chem Earth & Environm Sci TrACEES Platf, Parkville, Vic 3010, Australia
[4] Univ Melbourne, Biomed Engn, Parkville, Vic 3010, Australia
[5] Univ Melbourne, Graeme Clark Inst Biomed Engn, Parkville, Vic 3010, Australia
[6] Swinburne Univ Technol, Ind Transformat Training Ctr Surface Engn Adv Mat, Australian Res Council ARC, Hawthorn, VIC 3122, Australia
来源
BIOMATERIALS ADVANCES | 2025年 / 169卷
基金
澳大利亚研究理事会;
关键词
Hierarchical porosity; Bone tissue engineering; Calcium phosphate; Osteoblasts; 3D printing; Direct ink writing; PRINTED BIOCERAMIC SCAFFOLDS; CALCIUM-PHOSPHATE SCAFFOLDS; TRICALCIUM PHOSPHATE; IN-VITRO; HYDROXYAPATITE SCAFFOLDS; SURFACE-AREA; PORE-SIZE; ARCHITECTURE; VASCULARIZATION; SCALE;
D O I
10.1016/j.bioadv.2024.214149
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores. The in vitro results demonstrated that scaffolds with macroporosity promoted human osteoblast growth more than scaffolds with only microporosity. The elongated pores from the capillary suspension filament microstructure induced greater cell spreading than the sphere-like pores from the emulsion. Overall, the hierarchically porous scaffold with capillary suspension TCP filaments provided a superior microenvironment for significantly higher cell viability and proliferation than the other scaffolds, including a poly(epsilon-caprolactone) (PCL) control, a material currently used clinically as porous BTE scaffolds. The cellular response was further enhanced when macropore size was in the range of 570-590 mu m. Therefore, the hierarchically porous scaffolds in this study are promising as BTE scaffolds, and the reported process of DIW of oil-templated colloidal pastes is a feasible strategy with potential for further customization.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] 3D-printed microstructured alginate scaffolds for neural tissue engineering
    Li, Jianfeng
    Hietel, Benjamin
    Brunk, Michael G. K.
    Reimers, Armin
    Willems, Christian
    Groth, Thomas
    Cynis, Holger
    Adelung, Rainer
    Schuett, Fabian
    Sacher, Wesley D.
    Poon, Joyce K. S.
    TRENDS IN BIOTECHNOLOGY, 2025, 43 (02)
  • [32] 3D-printed biodegradable gyroid scaffolds for tissue engineering applications
    Germain, Loic
    Fuentes, Carlos A.
    van Vuure, Aart W.
    des Rieux, Anne
    Dupont-Gillain, Christine
    MATERIALS & DESIGN, 2018, 151 : 113 - 122
  • [33] 3D-printed scaffolds with calcified layer for osteochondral tissue engineering
    Li, Zhengyu
    Jia, Shuaijun
    Xiong, Zhuo
    Long, Qianfa
    Yan, Shaorong
    Hao, Fu
    Liu, Jian
    Yuan, Zhi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2018, 126 (03) : 389 - 396
  • [34] 3D gel-printing of hierarchically porous BCP scaffolds for bone tissue engineering
    Duan, Jing
    Shao, Huiping
    Liu, Hongyuan
    Xu, Jing
    Cong, Mengmeng
    Zhao, Kedan
    Lin, Tao
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2646 - 2653
  • [35] 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies
    Avanzi, Ingrid Regina
    Parisi, Julia Risso
    Souza, Amanda
    Cruz, Matheus Almeida
    Santi Martignago, Cintia Cristina
    Ribeiro, Daniel Araki
    Cavalcante Braga, Anna Rafaela
    Renno, Ana Claudia
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (01) : 203 - 219
  • [36] Biomimetic mineralization of 3D-printed polyhydroxyalkanoate-based microbial scaffolds for bone tissue engineering
    Kim, Dahong
    Lee, Su Jeong
    Lee, DongJin
    Seok, Ji Min
    Yeo, Seon Ju
    Lim, Hyungjun
    Lee, Jae Jong
    Song, Jae Hwang
    Lee, Kangwon
    Park, Won Ho
    Park, Su A.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (02) : 489 - 499
  • [37] Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering
    Das, Mitun
    Sharabani-Yosef, Orna
    Eliaz, Noam
    Mandler, Daniel
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (19) : 3833 - 3842
  • [38] Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering
    Yousefiasl S.
    Sharifi E.
    Salahinejad E.
    Makvandi P.
    Irani S.
    Engineered Regeneration, 2023, 4 (01): : 1 - 11
  • [39] Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Lee, Chang-Min
    Yang, Seong-Won
    Jung, Sang-Chul
    Kim, Byung-Hoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) : 2747 - 2750
  • [40] 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications
    Mohammadi-Zerankeshi, Meysam
    Alizadeh, Reza
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 2440 - 2446