Ultra-Fast Waveguide MUTC Photodiodes Over 220 GHz

被引:2
|
作者
Li, Linze [1 ,2 ,3 ,4 ]
Wang, Luyu [1 ]
Long, Tianyu [1 ]
Zhang, Zhouze [1 ]
Lu, Juanjuan [1 ]
Chen, Baile [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai 201210, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical waveguides; Optical coupling; Optical saturation; Bandwidth; Optical surface waves; Indium phosphide; III-V semiconductor materials; Photodiodes (PD); high-speed photodetectors; modified uni-traveling-carrier (MUTC); THz generation; TRAVELING-CARRIER PHOTODIODES; CAPACITANCE;
D O I
10.1109/JLT.2024.3379188
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present InP-based evanescently-coupled waveguide modified uni-traveling carrier photodiodes (MUTC-PDs) exhibiting a breakthrough in bandwidth. The optimization of carrier transport and optical coupling is achieved through a detailed discussion on the design of the cliff layer and waveguide layer. Addressing the parasitic capacitance challenge, we introduce benzocyclobutene (BCB) beneath the PD electrodes, effectively overcoming the bandwidth bottleneck associated with the RC time constant. Devices with sizes of 2 x 7 mu m(2) and 2 x 10 mu m(2) achieve 3-dB bandwidths over 220 GHz, along with external responsivities of 0.161 A/W and 0.237 A/W, respectively. Notably, the RF output power reaches a peak of -1.69 dBm at 215 GHz for 2 x 15 mu m(2) PDs.
引用
收藏
页码:7451 / 7457
页数:7
相关论文
共 50 条
  • [21] A superheterodyne 300 GHz wireless link for ultra-fast terahertz communication systems
    Dan, Iulia
    Ducournau, Guillaume
    Hisatake, Shintaro
    Szriftgiser, Pascal
    Braun, Ralf-Peter
    Kallfass, Ingmar
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2020, 12 (07) : 578 - 587
  • [22] Dramatically Enhanced Efficiency in Ultra-Fast Silicon MSM Photodiodes Via Light Trapping Structures
    Cansizoglu, Hilal
    Mayet, Ahmed S.
    Ghandiparsi, Soroush
    Gao, Yang
    Bartolo-Perez, Cesar
    Mamtaz, Hasina H.
    Devine, Ekaterina Ponizovskaya
    Yamada, Toshishige
    Elrefaie, Aly F.
    Wang, Shih-Yuan
    Islam, M. Saif
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (20) : 1619 - 1622
  • [23] 32 GHz high-power MUTC waveguide photodiode for 1310 nm
    Yu, Fengxin
    Sun, Keye
    Gao, Junyi
    Beling, Andreas
    2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2022,
  • [24] Ultra-fast imaging reveals
    Juel, Anne
    JOURNAL OF FLUID MECHANICS, 2024, 1000
  • [25] Ultra-fast monocycle generator
    Rothman, JL
    ELECTRONIC DESIGN, 1996, 44 (16) : 102 - 102
  • [26] Ultra-fast hadronic calorimetry
    Denisov, Dmitri
    Lukic, Strahinja
    Mokhov, Nikolai
    Striganov, Sergei
    Ujic, Predrag
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 898 : 125 - 132
  • [27] AN ULTRA-FAST PINCH EXPERIMENT
    ADLAM, JH
    HOLMES, LS
    NUCLEAR FUSION, 1963, 3 (02) : 62 - 72
  • [28] Measuring ultra-fast waveforms
    不详
    R&D MAGAZINE, 2005, 47 (04): : 15 - 15
  • [29] Quantitative Ultra-Fast Flim
    Koenig, Marcelle
    Dowler, Rhys
    Reisch, Paja
    Kraemer, Ben
    Orthaus, Sandra
    Sackrow, Marcus
    Patting, Matthias
    Roehlicke, Tino
    Rahn, Hans-Juergen
    Wahl, Michael
    Koberling, Felix
    Erdmann, Rainer
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 531A - 531A
  • [30] ULTRA-FAST ACTING INSULIN
    Danne, T.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2016, 18 : A10 - A10