Deep fuzzy physics-informed neural networks for forward and inverse PDE problems

被引:1
|
作者
Wu, Wenyuan [1 ]
Duan, Siyuan [1 ]
Sun, Yuan [1 ]
Yu, Yang [2 ,3 ]
Liu, Dong [2 ]
Peng, Dezhong [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
[3] Natl Univ Def Technol, Natl Key Lab Parallel & Distributed Comp, Changsha 410073, Peoples R China
关键词
Physics-informed learning; Fuzzy neural network; Automatic differentiation; Partial differential equations; BOUNDARY-VALUE-PROBLEMS; LEARNING FRAMEWORK; MACHINE;
D O I
10.1016/j.neunet.2024.106750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a grid-independent approach for solving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have garnered significant attention due to their unique capability to simultaneously learn from both data and the governing physical equations. Existing PINNs methods always assume that the data is stable and reliable, but data obtained from commercial simulation software often inevitably have ambiguous and inaccurate problems. Obviously, this will have a negative impact on the use of PINNs to solve forward and inverse PDE problems. To overcome the above problems, this paper proposes a Deep Fuzzy Physics-Informed Neural Networks (FPINNs) that explores the uncertainty in data. Specifically, to capture the uncertainty behind the data, FPINNs learns fuzzy representation through the fuzzy membership function layer and fuzzy rule layer. Afterward, we use deep neural networks to learn neural representation. Subsequently, the fuzzy representation is integrated with the neural representation. Finally, the residual of the physical equation and the data error are considered as the two components of the loss function, guiding the network to optimize towards adherence to the physical laws for accurate prediction of the physical field. Extensive experiment results show that FPINNs outperforms these comparative methods in solving forward and inverse PDE problems on four widely used datasets. The demo code will be released at https://github.com/siyuancncd/FPINNs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Adaptive fractional physics-informed neural networks for solving forward and inverse problems of anomalous heat conduction in functionally graded materials
    Ma, Xingdan
    Qiu, Lin
    Zhang, Benrong
    Wu, Guozheng
    Wang, Fajie
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [42] Interval and fuzzy physics-informed neural networks for uncertain fields
    Fuhg, Jan N.
    Kalogeris, Ioannis
    Fau, Amelie
    Bouklas, Nikolaos
    PROBABILISTIC ENGINEERING MECHANICS, 2022, 68
  • [43] Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs
    Mishra, Siddhartha
    Molinaro, Roberto
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 981 - 1022
  • [44] Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
    Xu, Shengfeng
    Yan, Chang
    Zhang, Guangtao
    Sun, Zhenxu
    Huang, Renfang
    Ju, Shengjun
    Guo, Dilong
    Yang, Guowei
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [45] Generative adversarial physics-informed neural networks for solving forward and inverse problem with small labeled samples
    Li, Wensheng
    Wang, Chuncheng
    Guan, Hanting
    Wang, Jian
    Yang, Jie
    Zhang, Chao
    Tao, Dacheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 183 : 98 - 120
  • [46] Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis
    Noakoasteen, Oameed
    Wang, Shu
    Peng, Zhen
    Christodoulou, Christos
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2020, 1 (01): : 404 - 412
  • [47] Deep NURBS-admissible physics-informed neural networks
    Saidaoui, Hamed
    Espath, Luis
    Tempone, Raul
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 4007 - 4021
  • [48] Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics
    Barmada, S.
    Di Barba, P.
    Formisano, A.
    Mognaschi, M. E.
    Tucci, M.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2023, 38 (11): : 841 - 848
  • [49] Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
    Beltran-Pulido, Andres
    Bilionis, Ilias
    Aliprantis, Dionysios
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (04) : 2678 - 2689
  • [50] Moving sampling physics-informed neural networks induced by moving mesh PDE
    Yang, Yu
    Yang, Qihong
    Deng, Yangtao
    He, Qiaolin
    NEURAL NETWORKS, 2024, 180