Deep fuzzy physics-informed neural networks for forward and inverse PDE problems

被引:1
|
作者
Wu, Wenyuan [1 ]
Duan, Siyuan [1 ]
Sun, Yuan [1 ]
Yu, Yang [2 ,3 ]
Liu, Dong [2 ]
Peng, Dezhong [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
[3] Natl Univ Def Technol, Natl Key Lab Parallel & Distributed Comp, Changsha 410073, Peoples R China
关键词
Physics-informed learning; Fuzzy neural network; Automatic differentiation; Partial differential equations; BOUNDARY-VALUE-PROBLEMS; LEARNING FRAMEWORK; MACHINE;
D O I
10.1016/j.neunet.2024.106750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a grid-independent approach for solving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have garnered significant attention due to their unique capability to simultaneously learn from both data and the governing physical equations. Existing PINNs methods always assume that the data is stable and reliable, but data obtained from commercial simulation software often inevitably have ambiguous and inaccurate problems. Obviously, this will have a negative impact on the use of PINNs to solve forward and inverse PDE problems. To overcome the above problems, this paper proposes a Deep Fuzzy Physics-Informed Neural Networks (FPINNs) that explores the uncertainty in data. Specifically, to capture the uncertainty behind the data, FPINNs learns fuzzy representation through the fuzzy membership function layer and fuzzy rule layer. Afterward, we use deep neural networks to learn neural representation. Subsequently, the fuzzy representation is integrated with the neural representation. Finally, the residual of the physical equation and the data error are considered as the two components of the loss function, guiding the network to optimize towards adherence to the physical laws for accurate prediction of the physical field. Extensive experiment results show that FPINNs outperforms these comparative methods in solving forward and inverse PDE problems on four widely used datasets. The demo code will be released at https://github.com/siyuancncd/FPINNs.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-output physics-informed neural networks for forward and inverse PDE problems with uncertainties
    Yang, Mingyuan
    Foster, John T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [2] Gradient-enhanced physics-informed neural networks for forward and inverse PDE
    Yu, Jeremy
    Lu, Lu
    Meng, Xuhui
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [3] An enhanced hybrid adaptive physics-informed neural network for forward and inverse PDE problems
    Luo, Kuang
    Liao, Shaolin
    Guan, Zhong
    Liu, Baiquan
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [4] B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
    Yang, Liu
    Meng, Xuhui
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425
  • [5] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [6] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [7] Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
    Gao, Han
    Zahr, Matthew J.
    Wang, Jian-Xun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [8] Solving forward and inverse problems of contact mechanics using physics-informed neural networks
    Sahin, Tarik
    von Danwitz, Max
    Popp, Alexander
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [9] Auxiliary physics-informed neural networks for forward, inverse, and coupled radiative transfer problems
    Riganti, R.
    Negro, L. Dal
    APPLIED PHYSICS LETTERS, 2023, 123 (17)
  • [10] Research on forward and inverse problems of structure based on physics-informed graph neural networks
    Zheng, Zhe
    Jiang, Wen-qiang
    Wang, Zhang-qi
    Xiao, Zi-ting
    Guo, Yu-cheng
    STRUCTURES, 2025, 74