A real-time indoor temperature and relative humidity prediction method for exhibition hall based on Long Short-Term Memory network

被引:1
|
作者
Wang, Shanshan [1 ]
Yan, Shurui [2 ,3 ]
Zhang, Dayu [1 ]
Wan, Shanshan [4 ]
Lv, Houchen [4 ]
Wang, Lan [5 ]
机构
[1] School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing,100044, China
[2] University of Chinese Academy of Sciences, Beijing,101408, China
[3] Fujian Province University Key Laboratory of Intelligent and Low-carbon Building Technology, Xiamen,361005, China
[4] School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing,100044, China
[5] School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
来源
基金
中国国家自然科学基金;
关键词
Long short-term memory - Mean square error;
D O I
10.1016/j.jobe.2024.111492
中图分类号
学科分类号
摘要
Indoor temperature and relative humidity, along with traffic flows, were primary factors influencing the thermal environment within exhibition halls. Therefore, maintaining high-quality interior conditions during the operation stage was critical for both occupants and exhibits. This study introduced a real-time temperature and humidity prediction method for the operational stage of exhibition halls using a Long Short-Term Memory (LSTM) model. The LSTM model was trained on a dataset comprising 60 days of monitoring data from an exhibition hall in a museum located in Beijing, northern China. The Root Mean Square Error (RMSE), Mean Squared Error (MSE), and R2 values for indoor temperature, humidity, and traffic flow during the operational stage in the validation dataset were 0.0316, 0.0009, and 0.97, respectively. This trained model provided real-time predictions of temperature and humidity, assisting building managers in making informed environmental control decisions. The model was further validated on a new case involving public spaces with varying building areas and heights. The performance of the LSTM model was confirmed through the development of a temperature and humidity prediction tool. The output trends of the LSTM model were found to be consistent. Consequently, the proposed method effectively and swiftly reflected the variation in operational stage temperature and humidity in the next moment due to changes in the spatial geometry of the public hall, outperforming non-sequential prediction methods. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Real-time machine-learning-based optimization using Input Convex Long Short-Term Memory network
    Wang, Zihao
    Yu, Donghan
    Wu, Zhe
    APPLIED ENERGY, 2025, 377
  • [32] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    International Journal of Photoenergy, 2022, 2022
  • [33] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [34] Preliminary Clinical Evaluation of a Convolutional Long Short-Term Memory (ConvLSTM) Based Real-Time 4D-CBCT Prediction Method
    Dang, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E113 - E113
  • [35] Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network
    Fengtao Wang
    Xiaofei Liu
    Gang Deng
    Xiaoguang Yu
    Hongkun Li
    Qingkai Han
    Neural Processing Letters, 2019, 50 : 2437 - 2454
  • [36] A Proton Flux Prediction Method Based on an Attention Mechanism and Long Short-Term Memory Network
    Zhang, Zhiqian
    Liu, Lei
    Quan, Lin
    Shen, Guohong
    Zhang, Rui
    Jiang, Yuqi
    Xue, Yuxiong
    Zeng, Xianghua
    AEROSPACE, 2023, 10 (12)
  • [37] Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model
    Ding, Nan
    Ma, HaoXuan
    Gao, Huanbo
    Ma, YanHua
    Tan, GuoZhen
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 79
  • [38] Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network
    Wang, Fengtao
    Liu, Xiaofei
    Deng, Gang
    Yu, Xiaoguang
    Li, Hongkun
    Han, Qingkai
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2437 - 2454
  • [39] Real-Time PPG Signal Conditioning with Long Short-Term Memory (LSTM) Network for Wearable Devices
    Wojcikowski, Marek
    SENSORS, 2022, 22 (01)
  • [40] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932