Vortex-Induced Vibration (VIV) of flexible riser conveying severe slugging and straight flow in steady and oscillatory flows

被引:0
|
作者
Li, Jianing [1 ]
Chen, Nian-Zhong [1 ,2 ]
机构
[1] Tianjin Univ, Sch Civil Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, State Key Lab Hydraul Engn Intelligent Construct &, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Severe slug flow; VIV; Oscillatory flow; Sheared flow; Flexible riser; SIMULATION; LINE;
D O I
10.1016/j.jsv.2024.118728
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper aims to investigate dynamic characteristics of Vortex-Induced Vibration (VIV) of a flexible riser conveying severe slug flow and straight flow in steady and oscillatory flows. Firstly, a classical wake oscillator model is adopted to simulate the coupling effects between internal and external flows on dynamic characteristics of VIV and an improved wake oscillator model is developed to calculate responses of VIV in oscillatory flow. A two-dimensional (2D) Computational Fluid Dynamics (CFD) model is developed to predict the behavior of severe slug flow. Then, structural equations of riser are discretized by adopting central difference method, and the RungeKuta method is adopted to solve them and the wake oscillator equations. The results show that characteristics of VIV, including root mean square (RMS) of displacement, dominant modes and vibration frequencies of riser conveying severe slugging differ significantly from those of riser conveying straight flow. New mode responses are triggered and multi-frequency phenomenon is observed due to severe slug flow. In addition, responses of VIV of riser conveying severe slug flow are influenced by the variation of the velocity or oscillation intensity of external flow. Model transition is normally triggered with a high-velocity sheared flow or a high Keulegan-Carpenter (KC) number.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Vortex-induced vibration response characteristics of catenary riser conveying two-phase internal flow
    Li, Xinghui
    Yuan, Yuchao
    Xue, Hongxiang
    Tang, Wenyong
    OCEAN ENGINEERING, 2022, 257
  • [32] Vortex-induced vibration dynamics of a flexible fluid-conveying marine riser subjected to axial harmonic tension
    Xiaodong Zhang
    Ruyi Gou
    Wenwu Yang
    Xueping Chang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [33] Vortex-induced vibration dynamics of a flexible fluid-conveying marine riser subjected to axial harmonic tension
    Zhang, Xiaodong
    Gou, Ruyi
    Yang, Wenwu
    Chang, Xueping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (08)
  • [34] Numerical investigation of vortex-induced vibration of a riser with internal flow
    Duan, Jinlong
    Chen, Ke
    You, Yunxiang
    Li, Jinlong
    APPLIED OCEAN RESEARCH, 2018, 72 : 110 - 121
  • [36] Study of the trajectory performance on the vortex-induced vibration response of a flexible riser
    State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu
    610500, China
    不详
    113-8656, Japan
    不详
    200240, China
    不详
    116024, China
    Chuan Bo Li Xue, 1600, 5 (563-575):
  • [37] Numerical study of vortex-induced vibration of a flexible cylinder with large aspect ratios in oscillatory flows
    Deng, Di
    Zhao, Weiwen
    Wan, Decheng
    Ocean Engineering, 2021, 238
  • [38] Study on suppressing the vortex-induced vibration of flexible riser in frequency domain
    Song, Jixiang
    Chen, Weimin
    Guo, Shuangxi
    Yan, Dingbang
    APPLIED OCEAN RESEARCH, 2021, 116
  • [39] Experimental study and numerical simulation on vortex-induced vibration of flexible riser
    Lou Min
    Guo Haiyan
    Dong Wenyi
    ACTA OCEANOLOGICA SINICA, 2007, 26 (02) : 94 - 105
  • [40] Experimental investigation on vortex-induced vibration of a flexible pipe in combined uniform and oscillatory flow
    Li, Xinghui
    Yuan, Yuchao
    Duan, Zhongdi
    Xue, Hongxiang
    Tang, Wenyong
    OCEAN ENGINEERING, 2023, 285