Theoretical and data-driven approaches to semiconductors and dielectrics: from prediction to experiment

被引:0
|
作者
Oba, Fumiyasu [1 ]
Nagai, Takayuki [2 ,9 ,10 ]
Katsube, Ryoji [3 ,11 ]
Mochizuki, Yasuhide [1 ,12 ]
Tsuji, Masatake [1 ,13 ]
Deffrennes, Guillaume [4 ,14 ]
Hanzawa, Kota [1 ]
Nakano, Akitoshi [2 ]
Takahashi, Akira [1 ]
Terayama, Kei [5 ,6 ]
Tamura, Ryo [7 ,8 ]
Hiramatsu, Hidenori [1 ]
Nose, Yoshitaro [3 ]
Taniguchi, Hiroki [2 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Japan
[3] Kyoto Univ, Dept Mat Sci & Engn, Kyoto, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Japan
[5] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama, Japan
[6] RIKEN, RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
[7] Natl Inst Mat Sci, Ctr Basic Res Mat, Tsukuba, Japan
[8] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Japan
[9] Univ Tokyo, Quantum Phase Elect Ctr QPEC, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[10] Univ Tokyo, Dept Appl Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[11] Nagoya Univ, Dept Mat Proc Engn, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[12] Inst Sci Tokyo, Sch Mat & Chem Technol, Dept Mat Sci & Engn, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[13] Inst Sci Tokyo, Inst Integrated Res, MDX Res Ctr Element Strategy, 4259 Nagatsuta,Midori Ku, Yokohama 2268501, Japan
[14] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
关键词
Semiconductors; dielectrics; photovoltaics; phase diagrams; first-principles calculations; machine learning; PLANE-WAVE; IMPROPER FERROELECTRICITY; NITRIDE PEROVSKITE; SOLAR-CELLS; THIN-FILMS; DENSITY; OXIDE; EXCHANGE; POLAR; TRANSITION;
D O I
10.1080/14686996.2024.2423600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational approaches using theoretical calculations and data scientific methods have become increasingly important in materials science and technology, with the development of relevant methodologies and algorithms, the availability of large materials data, and the enhancement of computer performance. As reviewed herein, we have developed computational methods for the design and prediction of inorganic materials with a particular focus on the exploration of semiconductors and dielectrics. High-throughput first-principles calculations are used to systematically and accurately predict the local atomic and electronic structures of polarons, point defects, surfaces, and interfaces, as well as bulk fundamental properties. Machine learning techniques are utilized to efficiently predict various material properties, construct phase diagrams, and search for materials satisfying target properties. These computational approaches have elucidated the mechanisms behind material functionalities and explored promising materials in combination with synthesis, characterization, and device fabrication. Examples include the development of ternary nitride semiconductors for potential optoelectronic and photovoltaic applications, the exploration of phosphide semiconductors and the optimization of heterointerfaces toward the improvement of phosphide-based photovoltaic cells, and the discovery of ferroelectricity in layered perovskite oxides and the theoretical understanding of its origin, all of which demonstrate the effectiveness of our computer-aided materials research.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,
  • [42] Data-driven prediction of air bending
    Vorkov, Vitalii
    Garcia, Alberto Tomas
    Rodrigues, Goncalo Costa
    Duflou, Joost R.
    18TH INTERNATIONAL CONFERENCE ON SHEET METAL, SHEMET 2019 - NEW TRENDS AND DEVELOPMENTS IN SHEET METAL PROCESSING, 2019, 29 : 177 - 184
  • [43] Data-driven background model for the CUORE experiment
    Adams, D. Q.
    Alduino, C.
    Alfonso, K.
    Avignone, F. T., III
    Azzolini, O.
    Bari, G.
    Bellini, F.
    Benato, G.
    Beretta, M.
    Biassoni, M.
    Branca, A.
    Brofferio, C.
    Bucci, C.
    Camilleri, J.
    Caminata, A.
    Campani, A.
    Cao, J.
    Capelli, S.
    Capelli, C.
    Cappelli, L.
    Cardani, L.
    Carniti, P.
    Casali, N.
    Celi, E.
    Chiesa, D.
    Clemenza, M.
    Cremonesi, O.
    Creswick, R. J.
    D'Addabbo, A.
    Dafinei, I.
    Del Corso, F.
    Dell'Oro, S.
    Di Domizio, S.
    Di Lorenzo, S.
    Dixon, T.
    Dompe, V.
    Fang, D. Q.
    Fantini, G.
    Faverzani, M.
    Ferri, E.
    Ferroni, F.
    Fiorini, E.
    Franceschi, M. A.
    Freedman, S. J.
    Fu, S. H.
    Fujikawa, B. K.
    Ghislandi, S.
    Giachero, A.
    Girola, M.
    Gironi, L.
    PHYSICAL REVIEW D, 2024, 110 (05)
  • [44] Prediction of surface integrity parameters of shot peening based on orthogonal experiment and data-driven
    Wu S.-J.
    Liu H.-J.
    Zhang R.-H.
    Zhang X.-H.
    Ge Y.-B.
    Surface Technology, 2021, 50 (04): : 86 - 95
  • [45] Data-driven prediction of multistable systems from sparse measurements
    Chu, Bryan
    Farazmand, Mohammad
    CHAOS, 2021, 31 (06)
  • [46] Rapid Prediction of Flexible Deformations of a Gust Generator Vane Using Data-Driven Approaches
    Wang, Libao
    Xu, Min
    Zhao, Dongqiang
    Huang, Guoning
    JOURNAL OF AEROSPACE ENGINEERING, 2023, 36 (03)
  • [47] Prediction of flight departure delays caused by weather conditions adopting data-driven approaches
    Seongeun Kim
    Eunil Park
    Journal of Big Data, 11
  • [48] Data-driven approaches for structure-property relationships in polymer science for prediction and understanding
    Yoshifumi Amamoto
    Polymer Journal, 2022, 54 : 957 - 967
  • [49] Data-driven approaches for structure-property relationships in polymer science for prediction and understanding
    Amamoto, Yoshifumi
    POLYMER JOURNAL, 2022, 54 (08) : 957 - 967
  • [50] Data-driven approaches in the investigation of social perception
    Adolphs, Ralph
    Nunnmenmaa, Lauri
    Todorov, Alexander
    Haxby, James V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1693)