The effect of nano-sized precipitates on stress corrosion cracking propagation of Alloy 718 under constant loads in PWR primary water

被引:0
|
作者
Wang, Jiamei [1 ]
Zhu, Tianyu [1 ]
Wu, Yule [1 ]
Chen, Kai [1 ]
Guo, Xianglong [1 ]
Ren, Quanyao [2 ]
Li, Yuanming [2 ]
Tang, Chuanbao [2 ]
Yi, Hongpu [2 ]
Ye, Liang [4 ]
Xu, Shihao [4 ]
Zhang, Jing [3 ]
Tian, Wenxi [3 ]
Zhang, Lefu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Nucl Sci & Engn, Shanghai 200240, Peoples R China
[2] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[4] China Nucl Power Technol Res Inst Co Lto, Shenzhen 518000, Peoples R China
关键词
Alloy; 718; Precipitates; Stress corrosion cracking; Crack growth rate; TEM; TKD; STAINLESS-STEEL; HYDROGEN EMBRITTLEMENT; HEAT-TREATMENT; NICKEL-ALLOYS; GROWTH RATE; TEMPERATURE; SCC; BEHAVIOR; MICROSTRUCTURE; PREDICTION;
D O I
10.1016/j.corsci.2024.112577
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stress corrosion cracking (SCC) propagation behavior of solution-annealed and precipitation-hardened Alloy 718 was investigated. The results show gamma '' and gamma ' precipitates are beneficial on retarding its crack growth under constant loads. Nano-sized precipitates at grain boundary (GB) tend to impede GB migration and oxidation beyond the crack tip, thereby compensating for the detrimental effect of a steeper strain gradient resulting from prominent elevated yield strength. The observed 2-40 times increase in CGR in hydrogenated water (near the Ni/ NiO boundary) primarily attributes to the preferential GB oxidation and instability of the oxides during phase transition.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] STRESS CORROSION CRACK GROWTH OF ALLOY 52M IN SIMULATED PWR PRIMARY WATER
    Toloczko, M. B.
    Olszta, M. J.
    Bruemmer, S. M.
    15TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL DEGRADATION OF MATERIALS IN NUCLEAR POWER SYSTEMS-WATER REACTORS, 2011, : 225 - 243
  • [32] Study on stress corrosion cracking susceptibility of 316LN in simulated primary loop of PWR under abnormal water chemistry conditions
    Tang, Zhan-Mei
    Hu, Shi-Lin
    Zhang, Ping-Zhu
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2014, 48 (11): : 1960 - 1964
  • [33] Primary water stress corrosion cracking in alloy 600 and intergranular crack growth rate
    Y. C. Jung
    H. S. Chung
    K. S. Lee
    N. H. Heo
    Metals and Materials International, 2010, 16 : 267 - 271
  • [34] Primary water stress corrosion cracking inspection ranking scheme for alloy 600 components
    Sargent Lundy, Chicago, United States
    Nucl Eng Des, 1-3 (209-219):
  • [35] Influence of surface condition on primary water stress corrosion cracking initiation of alloy 600
    Le Hong, S
    CORROSION, 2001, 57 (04) : 323 - 333
  • [36] Primary water stress corrosion cracking in alloy 600 and intergranular crack growth rate
    Jung, Y. C.
    Chung, H. S.
    Lee, K. S.
    Heo, N. H.
    METALS AND MATERIALS INTERNATIONAL, 2010, 16 (02) : 267 - 271
  • [37] Primary water stress corrosion cracking inspection ranking scheme for alloy 600 components
    Hoang, PH
    Gangadharan, A
    Ramalingam, SC
    NUCLEAR ENGINEERING AND DESIGN, 1998, 181 (1-3) : 209 - 219
  • [38] Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600
    Panter, J
    Viguier, B
    Cloué, JM
    Foucault, M
    Combrade, P
    Andrieu, E
    JOURNAL OF NUCLEAR MATERIALS, 2006, 348 (1-2) : 213 - 221
  • [39] Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water
    Fournier, L.
    Savoie, M.
    Delafosse, D.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 366 (1-2) : 187 - 197
  • [40] Effect of Strain Hardened Inner Surface Layers on Stress Corrosion Cracking of Type 316 Stainless Steel in Simulated PWR Primary Water
    Toshio Yonezawa
    Masashi Watanabe
    Atsushi Hashimoto
    M. D. Olson
    A. T. DeWald
    M. R. Hill
    Metallurgical and Materials Transactions A, 2019, 50 : 2462 - 2485