Inexact Newton methods for inverse eigenvalue problems

被引:0
|
作者
Department of Mathematics, Chinese University of Hong Kong, Hong Kong, Hong Kong [1 ]
机构
来源
Appl Math Comput (New York) | / 2 SPEC. ISS.卷 / 682-689期
关键词
Inexact Newton methods - Jacobian equations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A Guass-Newton-like method for inverse eigenvalue problems
    Wang, Zhibo
    Vong, Seakweng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (07) : 1435 - 1447
  • [32] The convergence analysis of inexact Gauss–Newton methods for nonlinear problems
    Jinhai Chen
    Computational Optimization and Applications, 2008, 40 : 97 - 118
  • [33] Inexact Newton methods in the solution of stiff initial value problems
    Morini, B
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2A : 189 - 191
  • [34] A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems
    Benner, Peter
    Onwunta, Akwum
    Stoll, Martin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (01) : 5 - 22
  • [35] RELATING NEWTON METHOD TO PROJECTION METHODS FOR EIGENVALUE PROBLEMS
    LENARD, CT
    APPLIED MATHEMATICS LETTERS, 1993, 6 (04) : 3 - 4
  • [36] Convergence factors of Newton methods for nonlinear eigenvalue problems
    Jarlebring, Elias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3943 - 3953
  • [37] On the convergence of inexact newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 355 - 363
  • [38] Inexact Newton dogleg methods
    Pawlowski, Roger P.
    Simonis, Joseph P.
    Walker, Homer F.
    Shadid, John N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 2112 - 2132
  • [39] On the convergence of inexact Newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2013, 103 : 355 - 363
  • [40] A geometric Gauss–Newton method for least squares inverse eigenvalue problems
    Teng-Teng Yao
    Zheng-Jian Bai
    Xiao-Qing Jin
    Zhi Zhao
    BIT Numerical Mathematics, 2020, 60 : 825 - 852