Drilling geologic characteristic parameters estimation and prediction model

被引:0
|
作者
School of Science, Southwest Petroleum University, Cheng Du [1 ]
Sichuan, China
不详 [2 ]
Sichuan, China
机构
来源
Intl. J. Earth Sci. Eng. | / 1卷 / 533-538期
关键词
Modal analysis - Parameter estimation - Adaptive boosting;
D O I
暂无
中图分类号
学科分类号
摘要
In view of the accuracy of the current drilling geologic characteristic parameters estimation and forecast model is not high, this paper presents drilling geologic characteristic parameters estimation and forecast model based on an improved Adaboost-SVM and modal parameters. Firstly, use the ergodicity, randomness and regularity of Logistic map to change SVM parameters, and then propose a measurement function combined with precision and differentiation to evaluate the generalization ability of the integrated classifier, finally, on the basis of the traditional drilling geologic characteristic parameters forecasting techniques, obtain the test results by using the modal parameters of the measured data identification system. Simulation results show that the proposed drilling geologic characteristic parameters estimation and forecast model based on the improved Adaboost-SVM and modal parameters has higher estimation and prediction accuracy. © 2014 CAFET-INNOVA TECHNICAL SOCIETY. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] Influence of the gas model on the boundary layer characteristic parameters and transition prediction for the Mars entry capsule
    Chen Z.
    Miao W.
    Li Q.
    Zhu Z.
    Ai B.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52 (02): : 292 - 302
  • [22] Probabilistic vehicle trajectory prediction via driver characteristic and intention estimation model under uncertainty
    Liu, Jinxin
    Xiong, Hui
    Wang, Tinghan
    Huang, Heye
    Zhong, Zhihua
    Luo, Yugong
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2021, 48 (06): : 778 - 791
  • [23] ON THE ESTIMATION OF PARAMETERS IN THE STATISTICAL PREDICTION OF EARTHQUAKES
    KIM, SG
    JOURNAL OF PHYSICS OF THE EARTH, 1983, 31 (04): : 251 - 264
  • [24] Electrode wear estimation model for EDM drilling
    Lee, Cheol-Soo
    Heo, Eun-Young
    Kim, Jong-Min
    Choi, In-Hugh
    Kim, Dong-Won
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2015, 36 : 70 - 75
  • [25] An explainable ensemble machine learning model to elucidate the influential drilling parameters based on rate of penetration prediction
    Feng, Zhipeng
    Gani, Hamdan
    Damayanti, Annisa Dwi
    Gani, Helmy
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 231
  • [26] Study on Prediction Model of Drilling Coal Ash
    Qiao, Gairui
    Cai, Huiwu
    Zhou, Anning
    Yang, Fuesheng
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENT PROTECTION (ICSEEP 2015), 2015, : 802 - 806
  • [27] Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters
    Mao, Liangjie
    Wei, Changjiang
    Jia, Hai
    Lu, Kechong
    ENERGY, 2023, 284
  • [28] Effect of ventilation parameters on dust pollution characteristic of drilling operation in a metro tunnel
    Xie, Zhuwei
    Ruan, Chao
    Zhao, Zhongtai
    Huang, Chen
    Xiao, Yimin
    Zhao, Qian
    Lin, Jianquan
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2023, 132
  • [29] Boundary Control and Estimation for Underbalanced Drilling With Uncertain Reservoir Parameters
    Strecker, Timm
    Aarsnes, Ulf Jakob F.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (01) : 281 - 294
  • [30] Novel Equation for the Prediction of Rheological Parameters of Drilling Fluids in an Annulus
    Nasiri, M.
    Ashrafizadeh, S. N.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (07) : 3374 - 3385