Mean densities in dynamic mathematical two-phase flow models

被引:0
|
作者
Bonilla, J. [1 ]
Yebra, L.J. [1 ]
Dormido, S. [2 ]
机构
[1] PSA-CIEMAT, Plataforma Solar de Almería, Centro de Investigaciones Energéicas, MedioAmbientales y Tecnológicas, 04200 Tabernas (Almería), Spain
[2] UNED, Universidad Nacional de Educación a Distancia, Escuela Técnica Superior de Ingeniería Informática, 28040, Madrid, Spain
来源
CMES - Computer Modeling in Engineering and Sciences | 2010年 / 67卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
19
引用
收藏
页码:13 / 37
相关论文
共 50 条
  • [31] Mathematical models of two-phase flows' interaction with a solid body
    Amelyushkin, I. A.
    CONFERENCE OF YOUNG SCIENTISTS IN MECHANICS, 2018, 1129
  • [32] Evaluation of two-phase flow models for flashing flow in nozzles
    Darby, R
    PROCESS SAFETY PROGRESS, 2000, 19 (01) : 32 - 39
  • [33] Dynamic pore-scale network models for two-phase flow in porous media
    Celia, MA
    Dahle, HK
    Hassanizadeh, SM
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2: COMPUTATIONAL METHODS FOR SUBSURFACE FLOW AND TRANSPORT - COMPUTATIONAL METHODS, SURFACE WATER SYSTEMS AND HYDROLOGY, 2000, : 217 - 223
  • [34] Power input and mean flow changes in two-phase agitation
    Katsanevakis, AN
    Smith, JM
    FLUID MIXING 6, 1999, (146): : 187 - 198
  • [35] A mathematical model for hysteretic two-phase flow in porous media
    Van Kats, FM
    Van Duijn, CJ
    TRANSPORT IN POROUS MEDIA, 2001, 43 (02) : 239 - 263
  • [36] A Mathematical Model for Hysteretic Two-Phase Flow in Porous Media
    F. M. van Kats
    C. J. van Duijn
    Transport in Porous Media, 2001, 43 : 239 - 263
  • [37] Compressible two-pressure two-phase flow models
    Jin, H.
    Glimm, J.
    Sharp, D. H.
    PHYSICS LETTERS A, 2006, 353 (06) : 469 - 474
  • [38] Mathematical Theory of Two-Phase Geochemical Flow with Chemical Species
    Lambert, W. J.
    Alvarez, A. C.
    Marchesin, D.
    Bruining, J.
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 255 - 267
  • [39] Two-phase flow equations with a dynamic capillary pressure
    Koch, Jan
    Raetz, Andreas
    Schweizer, Ben
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2013, 24 : 49 - 75
  • [40] A dynamic network model for two-phase immiscible flow
    Dahle, HK
    Celia, MA
    COMPUTATIONAL GEOSCIENCES, 1999, 3 (01) : 1 - 22