The characteristics of line-shaped defects and their impact mechanism on device performance in β-Ga2O3 Schottky barrier diodes

被引:0
|
作者
Liu, Jinyang [1 ]
He, Song [1 ]
Xu, Guangwei [1 ]
Hao, Weibing [1 ]
Zhou, Xuanze [1 ]
Zheng, Zheyang [1 ]
Long, Shibing [1 ]
机构
[1] Univ Sci & Technol China, Sch Microelect, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
REVERSE LEAKAGE; STACKING-FAULTS; BREAKDOWN; ORIGIN;
D O I
10.1063/5.0244107
中图分类号
O59 [应用物理学];
学科分类号
摘要
Beta-phase gallium oxide (beta-Ga2O3) has attracted increasing attention in the field of power electronic devices due to its ultra-wide bandgap and high Baliga figure-of-merit. However, the premature breakdown deteriorated with the increase in device area, hindering the scale-up of the current rating. In this work, we unveil the formation and characteristics of killer defects responsible for the premature breakdown in an Si-doped (001) beta-Ga2O3 epitaxial layer grown by halide vapor phase epitaxy. The killer defects feature a line-shaped morphology along the [010] orientation. Specifically, the high-resolution transmission electron microscopy characterization links the line-shaped defects to underlying voids. These voids are surrounded by amorphous phase regions, and the transition from amorphous phase to crystalline phase results in twins extending along the [010] orientation, which eventually become line-shaped defects on the wafer. Additionally, the defect area exhibits smaller capacitance and lower surface potential compared to the defect-free region. This is attributed to the absence of local ionized donors in the defect area, leading to electric field concentration in this region. This study systematically investigates a killer defect in beta-Ga2O3, which contributes to the scale-up process of beta-Ga2O3 power devices and advances their application.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Temperature dependence of barrier height inhomogeneity in β-Ga2O3 Schottky barrier diodes
    Jadhav, Aakash
    Lyle, Luke A. M.
    Xu, Ziyi
    Das, Kalyan K.
    Porter, Lisa M.
    Sarkar, Biplab
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (04):
  • [22] Investigation on Electrical Performance Degradation Mechanism of β -Ga2O3 Schottky Barrier Diodes Under 3 MeV Proton Radiation
    Yue, Shaozhong
    Zheng, Xuefeng
    Zhang, Fang
    Hong, Yuehua
    Wang, Yingzhe
    Zhu, Tian
    Gong, Sunyan
    Wang, Xiaohu
    Lv, Ling
    Cao, Yanrong
    Zhang, Weidong
    Zhang, Jianfu
    Ma, Xiaohua
    Hao, Yue
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (08) : 4584 - 4589
  • [23] Vertical Ga2O3 Schottky Barrier Diodes on Single-Crystal β-Ga2O3 (-201) Substrates
    Song, Bo
    Verma, Amit Kumar
    Nomoto, Kazuki
    Zhu, Mingda
    Jena, Debdeep
    Xing, Huili
    2016 74TH ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2016,
  • [24] Properties of Schottky barrier diodes on heteroeptixial α-Ga2O3 thin films
    Koepp, S.
    Petersen, C.
    Splith, D.
    Grundmann, M.
    von Wenckstern, H.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (04):
  • [25] Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications
    Tadjer, Marko J.
    Mahadik, Nadeemullah A.
    Freitas, Jaime A., Jr.
    Glaser, Evan R.
    Koehler, Andrew D.
    Luna, Lunet E.
    Feigelson, Boris N.
    Hobart, Karl D.
    Kub, Fritz J.
    Kuramata, A.
    GALLIUM NITRIDE MATERIALS AND DEVICES XIII, 2018, 10532
  • [26] Effects of microwave plasma treatment on β-Ga2O3 Schottky barrier diodes
    Fang, Paiwen
    Rao, Chang
    Liao, Chao
    Chen, Shujian
    Wu, Zhisheng
    Lu, Xing
    Chen, Zimin
    Wang, Gang
    Liang, Jun
    Pei, Yanli
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (11)
  • [27] Analytical models and simulations analysis of β-Ga2O3 Schottky barrier diodes
    Zhang, Hongpeng
    Guo, Liangliang
    Chen, Chengying
    Jia, Renxu
    Yuan, Lei
    Peng, Bo
    Zhang, Yuming
    Luan, Suzhen
    Zhang, Hongyi
    Zhang, Yimen
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (07)
  • [28] Vertical Schottky Barrier Diodes of α-Ga2O3 Fabricated by Mist Epitaxy
    Oda, Masaya
    Kikawa, Junjiroh
    Takatsuka, Akio
    Tokuda, Rie
    Sasaki, Takahiro
    Kaneko, Kentaro
    Fujita, Shizuo
    Hitora, Toshimi
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 137 - 138
  • [29] Integration of β-Ga2O3 on Si (100) for Lateral Schottky Barrier Diodes
    Yadav, Manoj K.
    Mondal, Arnab
    Kumar, Shiv
    Sharma, Satinder K.
    Bag, Ankush
    2021 IEEE 8TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), 2021, : 263 - 267
  • [30] Microwave Power Rectification Using β-Ga2O3 Schottky Barrier Diodes
    Oishi, Toshiyuki
    Urata, Kosuke
    Hashikawa, Makoto
    Ajiro, Kosuke
    Oshima, Takayoshi
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) : 1393 - 1395