Stable Cox regression for survival analysis under distribution shifts

被引:0
|
作者
Fan, Shaohua [1 ]
Xu, Renzhe [1 ]
Dong, Qian [2 ]
He, Yue [1 ]
Chang, Cheng [2 ]
Cui, Peng [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Beijing Inst Life, Beijing Proteome Res Ctr, Natl Ctr Prot Sci Beijing, State Key Lab Med Prote, Beijing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
PROPORTIONAL HAZARDS MODEL; VARIABLE SELECTION; GENE-EXPRESSION; MUTATIONS; INFERENCE; BLOCKADE; FEATURES; CANCER; HER2;
D O I
10.1038/s42256-024-00932-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Survival analysis aims to estimate the impact of covariates on the expected time until an event occurs, which is broadly utilized in disciplines such as life sciences and healthcare, substantially influencing decision-making and improving survival outcomes. Existing methods, usually assuming similar training and testing distributions, nevertheless face challenges with real-world varying data sources, creating unpredictable shifts that undermine their reliability. This urgently necessitates that survival analysis methods should utilize stable features across diverse cohorts for predictions, rather than relying on spurious correlations. To this end, we propose a stable Cox model with theoretical guarantees to identify stable variables, which jointly optimizes an independence-driven sample reweighting module and a weighted Cox regression model. Through extensive evaluation on simulated and real-world omics and clinical data, stable Cox not only shows strong generalization ability across diverse independent test sets but also stratifies the subtype of patients significantly with the identified biomarker panels.
引用
收藏
页码:1525 / 1541
页数:20
相关论文
共 50 条
  • [1] Survival analysis and Cox regression
    Benitez-Parejo, N.
    Rodriguez del Aguila, M. M.
    Perez-Vicente, S.
    ALLERGOLOGIA ET IMMUNOPATHOLOGIA, 2011, 39 (06) : 362 - 373
  • [2] Survival Analysis II: Cox Regression
    Stel, Vianda S.
    Dekker, Friedo W.
    Tripepi, Giovanni
    Zoccali, Carmine
    Jager, Kitty J.
    NEPHRON CLINICAL PRACTICE, 2011, 119 (03): : C255 - C260
  • [3] Survival analysis, part 3: Cox regression
    Koletsi, Despina
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2017, 152 (05) : 722 - 723
  • [4] SURVIVAL ANALYSIS ON HEMODIALYSIS PATIENTS USING COX REGRESSION
    Cuarteros, Kennet G.
    Cuarteros, Noel G., Jr.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 65 (02) : 165 - 187
  • [5] The Proper Use and Reporting of Survival Analysis and Cox Regression
    Su, Pei-Fang
    Lin, Chou-Ching K.
    Hung, Jo-Ying
    Lee, Jung-Shun
    WORLD NEUROSURGERY, 2022, 161 : 303 - 309
  • [6] THE ASYMPTOTIC JOINT DISTRIBUTION OF REGRESSION AND SURVIVAL PARAMETER ESTIMATES IN THE COX REGRESSION-MODEL
    BAILEY, KR
    ANNALS OF STATISTICS, 1983, 11 (01): : 39 - 48
  • [7] MULTIVARIATE SURVIVAL ANALYSIS USING COX REGRESSION-MODEL
    CHRISTENSEN, E
    HEPATOLOGY, 1987, 7 (06) : 1346 - 1358
  • [8] SURVIVAL ANALYSIS OF GASTRIC CANCER PATIENTS BY COX REGRESSION MODEL
    施榕
    陶志
    张微
    丘新尧
    史奎雄
    Journal of Shanghai Second Medical University, 1990, (01) : 101 - 106
  • [9] Survival Analysis of Cervical Cancer using Stratified Cox Regression
    Purnami, S. W.
    Inayati, K. D.
    Sari, N. W. Wulan
    Chosuvivatwong, V.
    Sriplung, H.
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2015), 2016, 1723
  • [10] Potts-Cox survival regression
    Martinez-Vargas, Danae
    Murua-Sazo, Alejandro
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187